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ABSTRACT 
 

TRENDS IN ALLOCHRONIC BREEDING POPULATIONS OF PINK SALMON 
(ONCORHYNCHUS GORBUSCHA) OF PRINCE WILLIAM SOUND, ALASKA 

 
By Claire Dormody 

 
Prince William Sound, Alaska is home to one of the largest pink salmon 

(Oncorhynchus gorbuscha) fisheries in the world. Salmon populations there have been 

fished commercially for over a century, and the State’s documentation of commercial 

fishing provides a valuable dataset in order to examine abundance trends of species in 

this region. For this thesis research, I analyzed the fluctuations in abundance and isolated 

even year and odd year breeding populations of pink salmon to assess whether there is a 

numerical discrepancy between pink salmon that spawn in odd years and the population 

that spawns in even years. Analysis of these two populations showed differences in the 

abundance of pink salmon in even breeding years when compared to odd years. This 

research also indicated that there is a growing difference in the rate of increase of the odd 

and even year populations over the fifty-year span, 1968-2018. Increasing instability and 

differences between the two breeding populations may be the result of factors such as 

changing ocean temperatures, human intervention by way of fishing and artificial stock 

enhancement, and instances of environmental disaster and pollution in the region.  Future 

research should investigate factors that may be resulting in these population differences. 
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Introduction 

The pink salmon (Oncorhynchus gorbuscha) fishery in Prince William Sound, Alaska 

is a large and economically important industry in the region.  Characterizing and 

understanding population trends for this species is essential, not only to maintaining the 

species, but also supporting the livelihoods of people dependent on the fishery.  Existing 

fishing totals maintained by the State of Alaska, when used as an abundance index of the 

salmon population, provide a dataset to analyze shifts in population and survival to 

maturity over many years of human intervention in the region. Pink salmon are divided 

into two populations or broodlines, that breed separately—one in even years and one in 

odd years.  Comparing the abundance indices for each broodline provides concrete 

evidence of changes in the populations relative to each other. Changes in the patterns of 

the two salmon populations may herald not only environmental instability, but also cause 

similar instability in the community that relies on the fishing industry for income and 

food security.  
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Literature Review 

State Salmon Fisheries 

The salmon fishing industry in Alaska is a significant economic force, not only in the 

state, but also in the Pacific Northwest and globally. Seafood harvested from Alaskan 

waters is distributed across the world and throughout the U.S. market, accounting for 

50% of the U.S. wild fish landings and making the waters off the coast of Alaska a 

valuable resource (Loring 2013). The average dollar value of seafood harvested from 

Alaskan waters in a year comes to around $5.2 billion based on 2015 and 2016 reports. 

Of this, salmon catches were responsible for $628 million of the sales, not including 

further circulation of fishery income or state and federal government fees (Botz and 

Russell 2017). 

Alaska state fishing waters are divided into different regions (Figure 1). Furthest 

north and west, the Arctic-Yukon-Kuskokwim fishing region includes the coldest waters 

in the state (Buklis 1999). To the southwest is the Westward or Aleutian region, named 

for the Aleutian Islands. The Southeast region is located to the east of the Gulf of Alaska, 

west of Juneau. Finally, the South Central, or Central, region includes Bristol Bay, Cook 

Inlet, and Prince William Sound, some of the most productive salmon fisheries in the 

world (Heard 2001). Each of these regions is further divided into management districts, 

which are opened or closed throughout the season as the fish runs allow. All districts are 

managed with the “maximum sustainable yield” principle in mind, as stated by the 

Alaska Department of Fish and Game. This principle dictates that fishing stocks should 
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be maintained at “maximum production of food from the sea on a sustained basis year 

after year” (Chapman 1949). 

    

Figure 1. Prince William Sound, located in the Southcentral fishing area, and the eleven 
subdivided districts. (AKDFG 2018) 
 
Hatchery Distribution 

The Alaska salmon industry has been a commercial power since the 1800s, and the 

first hatchery intended to bolster the population was constructed in 1892 on Etolin Island 

in order to address concerns of population decline, assumed to be caused by overfishing 

(Heard 2012). Initially, the focus was on production of sockeye salmon (Oncorhynchus 

nerka), and 12 of these hatcheries were constructed, including some owned and operated 

by the US Bureau of Fisheries (Hillborn and Eggers 2000). However, the impact was not 

as successful as the agency had hoped and most of the hatcheries were closed by the 

1930s (Heard 2012). Salmon harvests were high following the closures, harvesting solely 
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wild stock runs. But by the 1970s, harvests were facing record lows (Hillborn et al. 

2003). Attempts in the 1940s and 1950s to control overfishing and mitigate population 

decline, such as banning fish traps, were unsuccessful and the overfishing combined 

poorly with perceived environmental changes to create record population lows (Heard 

2012). This record decline prompted a resurgence of hatchery efforts in the state of 

Alaska, focusing largely on the production of chum (Oncorhynchus keta) and pink 

salmon (Schoen et al. 2017). In 1971, the Division of Fisheries Rehabilitation, 

Enhancement, and Development (FRED) was created within the Alaska Department of 

Fish and Game (Frenette and Lum 2010). FRED was responsible for maintaining and 

providing increased funding to single-species hatcheries devoted to the management of 

the salmon population (Hillborn et al. 2003). FRED provided funding for state run 

hatcheries, which, aided by the 1974 Private Nonprofit (PNP) Hatchery Act, permitted 

expansion into new locations (Stopha 2016). The PNP Hatchery Act allowed private 

companies or associations to operate hatcheries contributing to common property waters. 

Additionally, private hatchery operations were permitted to recover operating expenses 

with fish sales (Heard 2012). This is referred to as “cost recovery” fishing and allows 

hatcheries to contract fishermen for a certain dollar amount of catch. Fishermen are 

granted priority access to fishing grounds until the hatchery goals are met, and sales 

recoup hatchery operating costs. Currently, the PNP hatcheries make up the majority of 

the hatchery operations in the state, funded first by sales of cost recovery fish, of excess 

roe harvested that is not needed for breeding, and finally by state and federal grants 

(McDowell 2018; Stopha 2016). 
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Most remaining hatcheries are clustered around the Central and Southeast regions 

(Heard 2001). The Southeast Alaska fishing zone, SEAK, has two research hatcheries 

and 15 production hatcheries, providing mainly chum salmon as well as sockeye, 

Chinook (Oncorhynchus tshawytscha), and pink salmon (Heard 2012). The Central 

region contains Prince William Sound (PWS) and the world’s largest pink salmon 

hatchery operation (Tillotson, Hillborn, and Amoroso 2017). Ten hatchery facilities are 

still operational in the region, three of which focus on pink salmon output (Hillborn and 

Eggers 2000). The concentration of hatcheries is distributed in such a way as to target 

most of the commercial fishing fleet in the Gulf of Alaska, though not necessarily most 

independent fishermen (Heard 2012; Loring 2013). Of eight PNP hatchery groups, five 

currently produce salmon stocks for CCP fisheries and are organized as aquaculture 

associations, Prince William Sound Aquaculture Corporation (PWSAC) being the one 

local to Prince William Sound. These aquaculture associations receive tax revenue from 

the Alaska Department of Revenue to additionally fund operating costs (McDowell 

2018). Grant money is also available to associations like PWSAC via state, local, and 

federal associations (McDowell 2018). 

Hatchery Process 

During each year’s salmon run, hatcheries contract fishermen to harvest their 

allotment of brood stock, from which the hatchery harvests eggs and sperm. They then 

fertilize and incubate the next season’s crop of fish. Hatcheries are permitted a certain 

number of eggs to harvest and fertilize which varies depending on the size of the facility 

(Heard 2012). These numbers are estimated with the understanding that fertilization is 
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not one hundred percent, and mortality rates of juvenile fish are high upon release, so the 

returning fish populations will be much lower (Stopha 2016). The purpose of hatchery 

operations is to bolster wild fish populations by overcoming the even higher natural 

mortality that wild-spawning juvenile fish experience. Hatcheries do not select for any 

specific traits such as longevity or size, and while the hatchery fish are considered 

distinct from wild-spawning, they can be marketed identically as wild-caught salmon due 

to their growth to maturity in common property waters (Stopha 2016). However, hatchery 

fish are also distinct from farm-raised fish, which must be raised to market weight in 

captivity (Stopha 2016). 

Since the introduction of modern hatchery practices, the pink salmon catch in PWS 

has increased dramatically. Wild pink salmon runs in PWS vary between 2.2 million and 

19.6 million fish, in state-run surveys collected since 1977 (Bue et al. 1998). The 

combination of high-volume hatchery production alongside existing wild populations has 

led pink salmon harvests to increase to over 35 million fish in recent years, with an all 

time high of 76 million in 2013 (Tillotson, Hillborn, and Amoroso 2017). In PWS the 

three major hatcheries producing pink salmon are Armin F. Koernig, Wally Noerenberg, 

and Cannery Creek, which are permitted annually for broodstock harvest of 162 million, 

148 million, and 187 million pink salmon eggs respectively (PWSAC 2018).  

Pink Salmon 

There are five species of Pacific salmon native to Alaska. Of these, pink salmon are 

the smallest and the shortest lived. They are anadromous fish, which migrate from the 

ocean where they live out their lives into freshwater streams to spawn (Irvine et al. 2014). 
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Spawning typically occurs in the fall, and juvenile fish hatch and grow in freshwater 

streams until spring when they migrate to open water. Once attaining open ocean, fish 

live out a two-year life cycle before returning to spawn. Due to this time frame, pink 

salmon are classified as an allochronic species, meaning populations share a habitat but 

are genetically separated by breeding season (Alexander and Bigelow 1960; Tarpey et al. 

2017). This phenomenon is rare in vertebrate species and provides an interesting 

perspective to analyze differences within the two populations, or broodlines, of the 

species (Irvine et al. 2014; Taylor and Friesen 2017). Research has shown that even-year 

populations may be lower in total number of fish than odd-year populations depending on 

the region, though this has not been assessed in Prince William Sound (Irvine et al. 2014; 

Tarpey et al. 2017). Broodlines from different years, even those returning to the same 

spawning stream, exhibit more genetic differentiation than fish from same-year 

broodlines in different habitats (Tarpey et al. 2017). Pink salmon runs with higher total 

numbers often exhibit lower individual body weights, while lower total numbers exhibit 

higher individual weights, due to decreased competition for resources (Wertheimer et al. 

2017). 

No other Pacific salmon species experiences this breeding isolation, as they all have 

longer lifespans and reach maturity in overlapping cycles. Though the phenomenon has 

been analyzed in some regions outside of Prince William Sound, no consensus has been 

reached yet as to the source of the population size differences. Theories include 

overfishing, climate change, and resource competition as possibilities for the discrepancy, 

but so far, no explanation can be isolated (Irvine et al. 2014). Furthermore, the research 
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confirming the existence of this gap in population numbers does not often address change 

in the phenomenon over time.  
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Problem Statement 

The magnitude of the discrepancy between pink salmon broodlines in Prince William 

Sound is largely unstudied as is whether any discrepancies may fluctuate over time. 

Record low years such as the 2016 season have necessitated disaster relief measures for 

the fishery and those who rely on it, including $32,044,231 to be distributed to 

participants and another $17,700,062 to processors (AKDFG 2018; Botz and Russell 

2017). Meanwhile, the odd-numbered years 2013 and 2015 had all time high records for 

the pink salmon fisheries in PWS (Botz and Russell 2017). 

The purpose of this thesis research was to characterize the population differences in 

the even-year versus the odd-year broodlines of the Prince William Sound region and to 

determine if and how the population differences might be changing over time.  To 

address this goal, I assessed the following research questions and hypotheses: 

Research Questions 

RQ 1: Does the abundance of one broodline impact the other? 

RQ 2: Are the odd and even year broodlines distinguishably different from each other? In 

what ways are they different? 

RQ 3: Does one broodline exhibit dominance in the region? 

RQ 4: How have the population trends of these two broodlines changed over time? Is 

there a growing discrepancy between odd and even year populations? 

Hypotheses 

H1: The even and odd year broodlines are not significantly different from each other. 

H10: A = B. Data shift is equal to zero. 
H1a: A ≠ B. Data shift is not equal to zero. 
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H2: Annual abundance is not dependent on the previous year’s abundance. 

H20: Data points at lag 1 do not exhibit serial correlation. 
H2a: Data points at lag 1 are not independently distributed; they exhibit serial 

correlation. 
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Methods 

Study Site 

According to the Alaska Department of Fish and Game, the Prince William Sound 

Management Area encompasses “all coastal waters and inland drainages entering the 

Gulf of Alaska between Cape Suckling and Cape Fairfield'' (AKDFG 1985; Botz and 

Russell 2017). This zone is further subdivided into eleven districts; Coghill, Copper 

River/Bering River (two districts most often referred to together), Eastern, Eshamy, 

Montague, Northern, Northeastern, Southeastern, Southwestern, and Unakwik (Figure 1). 

These range from very large like the Copper River district, which spans more than 1,100 

square miles, to very small such as the Bering River district, which is barely 200 square 

miles (Botz & Russell 2017). Each district is managed individually for fishing and may 

be open or closed throughout the season as needed. As such, each district has its own 

total catch report compiled by Fish and Game, as well as being factored into the regional 

report for salmon catches made in Prince William Sound. Prince William Sound was 

selected as the research site because it is the location of the second largest pink salmon 

fishing operation in the world (Amoroso, Tillotson, and Hillborn 2017)  

Sampling 

Prince William Sound is treated here as a single case study. Though each of the 11 

districts may be individually sampled, the overlap of fish in each of these regions as well 

as the analysis of the overarching presence of pink salmon in PWS makes it impossible to 

treat each district as an individual sample. Salmon do tend to return to the streams they 

hatched in, or those nearby, but straying into other waters is common enough that the 
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delineations between fishing zones do not guarantee an isolated population (Groot and 

Margolis 1991). Furthermore, the districts are not divided evenly in terms of size, 

spawning ground access, or hatchery use, so they would not provide equivalent or 

comparable conditions.  Thus, yearly data for pink salmon for the entire PWS region 

were compared to each other. 

Each year was compared to previous and following years, as well as averaged out 

with other years in that broodline for comparison. Data from 1968-2018 were compared 

for this study to answer questions for the two broodlines. Records before 1968 do exist 

within Alaska Fish and Game offices but are inconsistent and provide less useful data 

overall.  

Data Collection Methods 

Data collection and analysis was completed utilizing secondary data, gathered and 

compiled by the Alaska Department of Fish and Game. As the state’s primary regulatory 

agency in the fishing industry, it maintains extensive records of fish harvests. Records 

from 2009 to the present are available online through the Fish and Game website. Earlier 

records must be accessed through the Department, by request. The oldest records remain 

in Fish and Game offices in hard copy. Records are available to the public at no cost. 

Fishermen are required to be licensed and permitted in the district they fish and must 

receive a fish tag for every catch that is sold (AKDFG 2018). These tags are issued and 

tracked by Fish and Game, providing a record of the season that is compiled into a yearly 

report of the pounds of fish of every species harvested in every region. Prince William 

Sound has its own report, broken down by species and then into each individual district 
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(Figure 2). Commercial Common Property Fishery (CCPF) totals represent fish sold to 

independent processing companies, while hatchery totals represent fish sold as part of the 

cost-recovery system to recoup hatchery-operating costs (Vega et al. 2017). Both factor 

into the total catch of pink salmon. Each fishing year, the season beginning in late June 

and ending August or September, has a gross number of fish caught, which can then be 

used as a relative indicator of abundance (Campbell 2015). This method of research is 

common to fisheries studies, as independent surveys are expensive and time consuming, 

while anglers and commercial fishing vessel data are often already recorded (Pennington 

1985). 

      

Figure 2. An example of Alaska Department of Fish and Game catch reports, this one 
from 2017, in number of fish caught and sold (Vega et al. 2017).  
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Catch as Abundance Index 

The purpose of the yearly catch data is to act as an abundance index for the 

population. While catch is not a perfect indicator of abundance, it is a reliable index that 

is used frequently within fisheries research. The collection of data by fisheries 

management organizations, in this case the Alaska Fish and Game Department, is large 

scale and long running, providing excellent datasets for analysis. As such, the method of 

catch-as-abundance can be seen throughout research such as in Irvine et al. (2014) and 

other works (Irvine and Fukuwaka 2011; Noakes and Beamish 2011; Radchenko et al. 

2007). In the case of this research, the comparison of years with those alongside, as well 

as the comparison of rates of change of abundance presents no need for Catch Per Unit 

Effort calculations.  

Analysis Methods 

All statistical analysis was conducted using RStudio, version 1.3.1073. In order to 

address the research questions, I performed analysis on three data sets. The first 

encompasses the total catch each year from 1968 to 2018. From this dataset, two 

individual broodline datasets were isolated. Values recorded in even years and values 

recorded in odd years make up the even- and odd-year broodline data, respectively.  

Because the series are not normally distributed, the Wilcoxon Rank Sum test, a non-

parametric test, was used instead of a two-sample t-test to determine if the broodlines 

were statistically significantly different. The null hypothesis assumes “location shift is 

equal to zero,” or simply, matching distributions with matching medians. Rejecting the 
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null would indicate a shift in one distribution to the left or right, in other words, different 

medians.  

Differencing, a data transformation method, was applied calculating the difference 

between consecutive data points as a method to stabilize the trend of the time series to 

observe variation and apply further analysis methods (Coghlan 2015). Once differenced, 

graphing the series alongside each other gives a picture of the variation between the even 

and odd year series and sets the data up for cumulative sum calculations. Percent change 

analysis is a view of change from year to year after differencing, returning positive values 

in the case that the following year is greater, and negative values in the case that it is 

smaller (Coghlan 2015).  

The cumulative sum method of time series analysis is a method for observing rate of 

change. By adding successive years to the existing total of those before, a picture of the 

increase in abundance specifically as it changed over time was established. The slopes of 

these lines of rate of change were then compared, showing differing rates where they 

exist.  

Autocorrelation testing determined if previous values in the series strongly 

determined the following data points. This method provides the coefficient of correlation 

between values in a time series, which can be measured against a confidence interval of 

0.05. The formula is calculated at a particular lag, indicating how far apart the data points 

are. In this case, a lag value of one will compare a year’s abundance value to the previous 

year. Significant values indicate data points, years, which are significant predictors of 

other points. Values that fall to zero indicate a lack of correlation or significant prediction 



	

 16 

of other values. Series that demonstrate serial correlation will demonstrate large 

alternating positive and negative fluctuations or values decreasing very slowly to zero 

over time. Autocorrelation analysis was applied to the entire dataset and to each 

broodline dataset.  
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Results 

The odd year broodline produces regularly higher values for the number of fish 

caught, with an average value roughly nine million fish per season higher than that of the 

even year broodline (Figure 3). Additionally, each broodline has increased in abundance 

over the fifty-year data set; however the odd year abundance values have not only 

remained higher but increased more rapidly and consistently than the even year 

abundance values (Figure 4). 

 

Figure 3. The full dataset of abundance indices, where even years are represented in blue 
and odd years are represented in red. 
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Figure 4. The abundance indices from 1969 to 2017, with trend lines showing the overall 
increase in million of fish caught. 
 

Percent change values of the odd year broodline exhibit variation but are largely 

positive, indicating a trend upward from year to year (Figure 5). Negative values, which 

indicate a decrease from one year to the next, occur seven times in the twenty-six values 

calculated from the raw data.  
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Figure 5. Percent change in the raw data of the odd year broodline, negative values 
indicating a downward trend in abundance and positive values indicating growth. 
 

Percent change in the even year broodline reveals an extremely high degree of 

variation (Figure 6). The initial view is misleading due to an incredibly large spike 

following the record low fishing year in 1972. When measured on the same scale it is 

clear that even year fluctuations are greater than odd year fluctuations. There are nine 

negative values from a set of twenty-five percent change values, but many of the values 

are percent changes over 200%, indicating an abundance index that may have doubled 

from a previous year, while remaining much lower than a corresponding odd year. While 

the average percent change value is positive, it comes out at 90.04% due to these very 

large shifts between years.  
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Figure 6. Percent change in the raw data of the even year broodline, negative values 
indicate a downward trend in abundance and positive values indicate growth. 1972 was a 
record low year with a catch of 57,000 fish. 

 
Observing the percent change of the dataset from even to odd year emphasizes the 

dramatic shifts in abundance even more than the individual broodlines (Figure 7). In the 

case of the shift from the record low of 1972 (57,000 fish) to 1973 (2,065,844 fish) is a 

3,518% increase that cannot even be measured on the same scale as the majority of the 

percent change values (Figure 7; 1973).  
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Figure 7. Percent change values for the dataset from 1968-2018, odd years typically 
marking a large increase from the prior even year. 
 

A side-by-side comparison of these differenced series shows they are obviously not 

the same (Figure 8). However, application of the Wilcoxon Rank Sum test for non-

normally distributed data both before and after differencing gives a p-value of 0.1, clearly 

greater than 0.05, indicating that statistically the broodlines are not significantly different. 

With this, the null hypothesis (H10: A = B. Data shift is equal to zero) is accepted.  
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Figure 8. Side by side view of the differenced broodline datasets, now stationary, 
achieved by subtracting the previous year from the current one. 

 
The cumulative sum method is a way to visualize and analyze the change over time in 

the series. Once established, the cumulative sums of the series can be compared. Visually 

this provides an assessment of overall values and how they make up the abundance index 

and the individual broodlines (Figure 9; Figure 10).  
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Figure 9. The cumulative sum of the abundance index, achieved by adding each year to 
the sum of the previous.   

 
Figure 10. The cumulative sums of the even broodline in blue and the odd broodline in 
red. 

 
Visualization of the cumulative sums as straight lines gives a more obvious indication 

of slope and overall rate of change (Figure 11; Table 1). Though the distributions are not 
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statistically significantly different by the Rank-Sum test, the slopes of the cumulative 

sums of the broodlines are different, indicating that there are differences in the rate of 

growth. The comparison of the slope equations specifically shows a greater rate of 

change in the odd year broodline. 

           

Figure 11. The cumulative sums of the even, in blue, broodline and the odd, in red, 
broodline, including trendlines representing the rate of change. 

 
Table 1. Slopes of the cumulative sum lines in the datasets. 

Dataset Slope (Slope-Intercept Form) 

Abundance from 1968-2018 26128908x – 51419238658 

Even Year Broodline 1968-2018 1043804x – 21731754222 

Odd Year Broodline 1969-2017 15613054x – 30737275690 

 
The difference in increase between the odd year broodline and the even year 

broodline is clear as it progresses along the time frame. The even year broodline 
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evidences more variation in the differenced data (Figure 8) as well as in dramatic 

fluctuations of the percent change values recorded across the dataset (Figure 7). In 

looking at the results of the percent change and the comparison of slopes, there is a 

significant difference from the odd year broodline when viewed under the same tests. The 

odd year broodline had more consistent increases (Figure 3), higher abundance values 

(Figure 4) and a cumulative sum that slopes upward more sharply (Figure 11), indicating 

that the changes in abundance happen at an increased rate.  

Finally, to test the hypothesis that yearly abundance is not determined by the previous 

year’s abundance, autocorrelation analysis was employed. The results here of the 

autocorrelation function (ACF) at lag one demonstrated that there is little autocorrelation, 

also known as serial correlation, of significance (Figure 12). The spike at year zero is 

always 1.0 as it correlates with itself, but following values decrease to 

zero. Autocorrelation analysis run on the individual broodline datasets revealed only 

slightly more significance, demonstrating that while the preceding breeding year for the 

broodline may have an impact, the effect is not strongly correlated with future points in 

the dataset (Figure 13; Figure 14). This result accepts the null hypothesis (H20: Data 

points at lag 1 do not exhibit serial correlation.) 
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Figure 12. Autocorrelation of the abundance dataset at lag 1, for the first 18 years. Values 
in the data after this become even smaller and insignificant. 

 
Figure 13. The results of autocorrelation tests on even data, where the dotted blue lines 
represent a 0.05 confidence interval. 

C
on

fid
en

ce
 In

te
rv

al
 

C
on

fid
en

ce
 In

te
rv

al
 



	

 27 

 
Figure 14. Autocorrelation of odd year raw data, where the dotted blue lines represent a 
0.05 confidence interval.  
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Discussion 

This research examined the abundance of the two pink salmon broodlines in Prince 

William Sound to assess whether there is a difference in the catch abundance between 

even and odd year broodlines, a difference that was strongly suspected (Groot and 

Margolis 1991), but which needed to be confirmed. While the catch levels of both 

broodlines have been increasing over time, there is still a marked difference between the 

odd and even year broodlines. The analysis showed that the odd year abundance 

increased more rapidly and at larger values than the even year abundance. This has been 

established in other locations including parts of British Columbia (Groot and Margolis 

1991; Irvine et al. 2014).  

Paired with observation of current events and policy in the region, this analysis 

supports assumptions that can be made following the disastrous fishing season in 2016 as 

compared to the record-breaking seasons in 2013 and 2015 (Botz and Russell 2017). 

Though it is not verifiable that odd year broodline abundance increases because of even 

year abundance decreasing or becoming unstable, it is apparent that the two are 

happening along the same time frame. 

Yearly abundance was not found to be dependent on the previous year’s abundance, 

indicating the near-independence of hatches from one year to the next. This result seems 

counterintuitive when discussing a single species, as the previous breeding seasons 

should have an impact on those following. In order for this to be the case, there must be 

some outside factor or factors impacting the relationship between parent generations and 

their offspring. Because Prince William Sound has such intensive hatchery production 



	

 29 

and release, there may be such a contribution of fish from hatcheries that there is no 

longer a direct relationship between each generation’s populations.  

With instability in fish populations comes instability in the industry they support. In 

the case of the pink salmon fishery in PWS, the hatchery-released fish are intended to 

bolster wild populations and help to guard fishermen and processors from the 

consequences of a very poor season among wild-spawning salmon. However, when this 

is unsuccessful, such as in the disastrous 2016 season, it leaves not only independent 

fishermen in economic distress, but taxes the state further to make up the difference in 

supporting aquaculture associations such as PWSAC. In very dire situations, not only is 

the economic gain of the season threatened, but also employment opportunity in the 

industry going forward is in jeopardy. A processing company or fishing vessel that 

anticipates a very low-yield season will hire fewer employees to cut down on the risk of 

paying for unnecessary labor. These factors combine to create even more economic stress 

on individuals for whom the seasonal fishing industry may be their only source of income 

for the year. 

Many possibilities exist for why the even year broodline demonstrates a lesser rate of 

growth, as well as extreme variation within itself. In some regions, such as the Fraser 

river, there are no or very few naturally occurring even year spawning salmon, while in 

Bristol Bay there are no naturally occurring odd year spawning salmon (Groot and 

Margolis 1991). Based on the geographic distribution, some researchers suggest that 

water temperature favors one broodline over the other (Irvine and Fukuwaka 2011; 

Radchenko, Temnykh and Lapko 2007). This seems like one of the most likely factors, 
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very possibly in conjunction with other environmental and genetic changes. As warmer 

ocean temperatures push cold-water species further north, a broodline that favors cold 

water is going to be less successful. 

Other possibilities include that introduction and widespread use of hatchery stock to 

augment wild spawning populations. Though the intent in releasing hatchery-raised 

stocks is to recapture all of them at maturity, there is always a degree of hatchery 

escapement (Brenner, Moffitt and Grant 2012). Additionally, hatchery stocks that survive 

to spawn naturally have low rates of breeding success when compared to wild spawning 

salmon (Brenner, Moffitt and Grant 2012; Hillborn and Eggers 2000).  

Further Research 

The overall trend from 1968 to 2018 data showed increasing catch numbers due to 

factors including increased hatchery fish contributions and improved fishing methods, 

years can be compared relative to those shortly before and after with reasonable certainty 

that these factors are constant. Further research could establish a view of catch effort 

standardization for the region by examining the overlap of fishing effort and 

improvements in technology or fishing methods. This may be difficult to examine 

because fishing days are determined by the state based on the presence of substantial 

populations, rather than the season opening and closing at predetermined dates, making 

days in the season a function of fish population as opposed to fish captured being a 

function of days in the season. Further study is also needed to establish whether even year 

runs are not, in fact, naturally successful in Prince William Sound, but instead the result 

of hatchery stocks straying into spawning streams.  



	

 31 

References 

“Alaska Habitat Management Guide, Southcentral Region, Volume 1: Life Histories and 
Habitat Requirements of Fish and Wildlife.” 1985. Juneau: Alaska Department of 
Fish and Game Division of Habitat. 

 
Alaska Department of Fish and Game. 2018a. 2019–2021 Prince William Sound Area 

Commercial Salmon Fishing Regulations. 
 
———. 2018b. 2016 Pink Salmon Disaster Spending Plan. Department of Fish and 

Game. 
 
Alexander, Richard D, and Robert S Bigelow. 1960. “Allochronic Speciation in Field 

Crickets, and a New Species, Acheta Veletis,” Evolution 14, 14, no. 3: 334–46. 
 
Amoroso, Ricardo O, Michael D Tillotson, and Ray Hilborn. 2017. “Measuring the Net 

Biological Impact of Fisheries Enhancement: Pink Salmon Hatcheries Can Increase 
Yield, but with Apparent Costs to Wild Populations,” Canadian Journal of Fisheries 
and Aquatic Sciences 74, 74, no. 8: 1233–42. 

 
Blankenship, H Lee, and Kenneth M Leber. 1995. “A Responsible Approach to Marine 

Stock Enhancement.” In , 15:167–75. 15. 
 
Botz, Jeremy, and Charles Russell. 2017. “Prince William Sound Area Commercial 

Salmon Fisheries: A Report to the Alaska Board of Fisheries.” 
 
Buklis, Lawrence S. 1999. “A Description of Economic Changes in Commercial Salmon 

Fisheries in a Region of Mixed Subsistence and Market Economies,” Arctic, , 40–48. 
 
Campbell, Robert A. 2015. “Constructing Stock Abundance Indices from Catch and 

Effort Data: Some Nuts and Bolts.” Fisheries Research 161. ScienceDirect. 
 
Clark, John H, Andrew McGregor, Robert D Mecum, Paul Krasnowski, and Amy M 

Carroll. 2006. “The Commercial Salmon Fishery in Alaska,” Alaska Fishery 
Research Bulletin 12, 12, no. 1: 1–146. 

 
Coghlan, Avril. 2015. “A Little Book of R for Time Series,” Disponıvel em: 

https://media.readthedocs.org/pdf/a-little-book-of-r-for-time-series/latest/a-little- 
bookof-r-for-time-series.pdf¿.Acesso em 10, 10. 

 
Groot, Cornelis, and Leo Margolis. 1991. Pacific Salmon Life Histories. UBC press.  
 



	

 32 

Heard, William R. 2001. “Alaska Salmon Enhancement: A Successful Program for 
Hatchery and Wild Stocks,” Ecology of aquaculture species and enhancement of 
stocks. 149. 

 
Heard, William R. 2012. “Overview of Salmon Stock Enhancement in Southeast Alaska 

and Compatibility with Maintenance of Hatchery and Wild Stocks,” Environmental 
Biology of Fishes 94, 94, no. 1: 273–83. 

 
Hilborn, Ray. 2007. “Defining Success in Fisheries and Conflicts in Objectives,” Marine 

Policy 31, 31, no. 2: 153–58. 
 
Hilborn, Ray, Trevor A. Branch, Billy Ernst, Arni Magnusson, Carolina Minte-Vera, 

Mark D. Scheuerell, and Juan L. Valero. 2003. “State of the World’s Fisheries,” 
Annual Review of Environment and Resources 28, 28, no. 1: 359–99. 

 
Hilborn, Ray, and Doug Eggers. 2000. “A Review of the Hatchery Programs for Pink 

Salmon in Prince William Sound and Kodiak Island, Alaska,” Transactions of the 
American Fisheries Society 129, 129, no. 2: 333–50. 

 
Holmes, E. E., M. D. Scheuerell, and E. J. Ward. 2020. Applied Time Series Analysis for 

Fisheries and Environmental Sciences. 2725 Montlake Blvd E., Seattle, WA 98112: 
NOAA Fisheries, Northwest Fisheries Science Center. 

 
Hyndman, Rob J, and George Athanasopoulos. 2018. Forecasting: Principles and 

Practice. OTexts. 
 
Irvine, James R, and Masa-aki Fukuwaka. 2011. “Pacific Salmon Abundance Trends and 

Climate Change,” ICES Journal of Marine Science 68, 68, no. 6: 1122–30. 
 
Loring, Philip A. 2013. “Alternative Perspectives on the Sustainability of Alaska’s 

Commercial Fisheries,” Conservation Biology 27, 27, no. 1: 55–63. 
 
Maunder, Mark N, and André E Punt. 2004. “Standardizing Catch and Effort Data: A 

Review of Recent Approaches,” Fisheries research 70, 70, no. 2–3: 141–59. 
 
McDowell Group. 2018. “Economic Impact of Alaska’s Salmon Hatcheries.” Anchorage, 

Alaska: McDowell Group. http://www.mcdowellgroup.net/wp- 
content/uploads/2018/10/economic-impact-of-alaskas-salmon-hatcheries.pdf. 

 
Noakes, Donald J, and Richard J Beamish. 2011. “Shifting the Balance: Towards 

Sustainable Salmon Populations and Fisheries of the Future,” Sustainable Fisheries: 
Multi-Level Approaches to a Global Problem, , 23–50.  

 



	

 33 

Poe, Aaron J, and Randy Gimblett. 2017. Sustaining Wildlands: Integrating Science and 
Community in Prince William Sound. University of Arizona Press. 

 
Porszt, Erin J, Randall M Peterman, Nicholas K Dulvy, Andrew B Cooper, and James R 

Irvine. 2012. “Reliability of Indicators of Decline in Abundance,” Conservation 
Biology 26, 26, no. 5: 894–904. 

 
Radchenko, Vladimir I, Olga S Temnykh, and Viktor V Lapko. 2007. “Trends in 

Abundance and Biological Characteristics of Pink Salmon (Oncorhynchus 
Gorbuscha) in the North Pacific Ocean,” North Pacific Anadromous Fish 
Commission Bulletin 4, 4: 7–21. 

 
Regier, Peter, Henry Briceño, and Joseph N. Boyer. 2019. “Analyzing and Comparing 

Complex Environmental Time Series Using a Cumulative Sums Approach,” 
MethodsX 6, 6: 779–87. 

 
Ruggerone, Gregory T, and Jennifer L Nielsen. 2004. “Evidence for Competitive 

Dominance of Pink Salmon (Oncorhynchus Gorbuscha) over Other Salmonids in the 
North Pacific Ocean,” Reviews in Fish Biology and Fisheries 14, 14, no. 3: 371–90. 

 
Schoen, Erik R, Mark S Wipfli, E Jamie Trammell, Daniel J Rinella, Angelica L Floyd, 

Jess Grunblatt, Molly D McCarthy, Benjamin E Meyer, John M Morton, and James E 
Powell. 2017. “Future of Pacific Salmon in the Face of Environmental Change: 
Lessons from One of the World’s Remaining Productive Salmon Regions,” Fisheries 
42, 42, no. 10: 538–53. 

 
Shumway, Robert H, and David S Stoffer. 2017. Time Series Analysis and Its 

Applications: With R Examples. Springer. 
 
Skud, Bernard Einar. 1982. “Dominance in Fishes: The Relation between Environment 

and Abundance,” Science 216, 216, no. 4542: 144–49. 
 
Stergiou, K I, and E D Christou. 1996. “Modelling and Forecasting Annual Fisheries 

Catches: Comparison of Regression, Univariate and Multivariate Time Series 
Methods,” Fisheries Research 25, 25, no. 2: 105–38. 

 
Stopha, Mark. 2016. “Alaska’s Private Non-Profit Hatchery Program.” Alaska Fish and 

Wildlife News. 
 
Tarpey, Carolyn M, James E Seeb, Garrett J McKinney, William D Templin, Alexander 

Bugaev, Shunpei Sato, and Lisa W Seeb. 2018. “Single-Nucleotide Polymorphism 
Data Describe Contemporary Population Structure and Diversity in Allochronic 
Lineages of Pink Salmon (Oncorhynchus Gorbuscha),” Canadian Journal of Fisheries 
and Aquatic Sciences 75, 75, no. 6: 987–97. 



	

 34 

 
Taylor, Rebecca S, and Vicki L Friesen. 2017. “The Role of Allochrony in Speciation,” 

Molecular ecology 26, 26, no. 13: 3330–42. 
 
Townend, James. 2002. Practical Statistics for Environmental and Biological Scientists. 

Aberdeen, UK: John Wiley & Sons. 
 
Vega, Stacy L, Jeremy Botz, Stormy Haught, and Charles W Russell. 2019. 2017 Prince 

William Sound Area Finfish Management Report. Alaska Department of Fish and 
Game, Division of Sport Fish, Research and …. 

 
Wertheimer, Alex C, William R Heard, J M Maselko, and William W Smoker. 2004. 

“Relationship of Size at Return with Environmental Variation, Hatchery Production, 
and Productivity of Wild Pink Salmon in Prince William Sound, Alaska: Does Size 
Matter?,” Reviews in Fish Biology and Fisheries 14, 14, no. 3: 321–34. 

 
Ye, Yimin, and Darren Dennis. 2009. “How Reliable Are the Abundance Indices Derived 

from Commercial Catch–Effort Standardization?,” Canadian Journal of Fisheries and 
Aquatic Sciences 66, 66, no. 7: 1169–78. 

 


	Changes in Allochronic Breeding Populations of Pink Salmon (Oncorhynchus Gorbuscha) of Prince William Sound, Alaska
	Recommended Citation

	Microsoft Word - Dormody_Claire_Thesis.docx

