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ABSTRACT

STABILITY OF EARTH’S TRAJECTORY INSIDE A BINARY STAR SYSTEM

by Michael S. Krunic

The evolution of the solar system is an interesting dynamical problem in celestial

mechanics. Computer simulations have shown that planetary bodies in multiple-body

systems become unstable after a long time. In this thesis, through numerical simulations,

we investigate the stability of the Earth in a binary star system. In the Sun, Earth, and

Jupiter three-body system, we treat Jupiter as the second star (Star 2) and we simulate the

Earth’s orbit over many orbital periods. In our program, we generate the positions,

velocities, accelerations, and other orbital elements of each body using Newton’s laws of

motion. We explore four types of simulations including when the system is run with the

usual locations and masses, when the mass of Star 2 is changed at the position of Jupiter,

when the stars have equal mass and the location of Star 2 is changed, and when the

position and mass of Star 2 changed. We plot the position coordinates of the Earth and

determine when the Earth exhibits unpredictable or erratic behaviors.
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1 INTRODUCTION

Order and regularity are paradigms for describing the motion of planets in our solitary

star Solar System: The Sun’s trajectory is placed at the center while the eight planets

revolve around it in stable trajectories. However, once a second star is introduced and

certain parameters are changed, instability may result. In this thesis, we explore the

orbital stability of Earth in the presence of an additional star as a three-body problem

involving Earth, the Sun, and the hypothetical second star. We consider the following:

What effect does the second star’s mass have on Earth’s trajectory? What effect does the

second star’s position have on Earth’s trajectory? What are the conditions for which Earth

is stable and those for which Earth is unstable?

1.1 Overview of the Thesis

In the introduction we review the history and elements of celestial mechanics and

discuss the motivation for studying stability problems. We present previous stability

studies involving the three-body problem and discuss how they relate to this thesis. We

briefly address a three-body study involving the Alpha Centauri system, the Planet Nine

Hypothesis, and discuss how a binary star system may be able to capture a planet. We

present a calculation of the apparent brightness of a hypothetical second star in our Solar

System.

In Chapter 2 we discuss the physics and derive the constants of the two-body problem.

Using the two-body model, we individually simulate each of the eight planets around the

Sun. We use the results of this simulation to validate our computer program. We derive

the stability condition for the two-body problem and show that the inverse-square law

leads to the stability condition.

In Chapter 3 we present the equations that are used in the three-body analysis,

including those derived from the disturbing function. We present Cowell’s perturbation

method and show the results of how perturbation influence Earth’s and Jupiter’s orbit

1



around the Sun. We compare the simulations of the orbital energy and angular momentum

of the two-body and three-body problems.

In Chapter 4 we cover the numerical methods and algorithms used throughout the

thesis. We discuss the Euler-Cromer and the Runge Kutta 4th order methods. We outline

the method of computation by including the algorithms we used to generate the orbital

elements.

In Chapter 5 we present the results from our simulations. We discuss how changing

the mass and perihelion position of Star 2 affects the trajectory of Earth’s orbit in a binary

star system.

In Chapter 6 we provide a discussion for the results and address the questions listed in

the introduction.

1.2 Historical Review of Celestial Mechanics

Celestial mechanics was developed in the 16th and 17th centuries. Johannes Kepler

discovered his laws of planetary motion which described the orbits of the planets about

the Sun as being elliptical rather than circular, and demonstrated that a planet’s velocity

changes depending on its distance from the Sun. Kepler’s three empirical laws of

planetary motion are:

1) A planet follows an elliptical orbit about the Sun positioned at one of the foci.

2) The radius vector from the Sun to a planet sweeps out equal areas in equal times.

3) A planet’s orbital period T is proportional to the planet’s semi-major axis a by

T 2
α a3. (1)

Mathematically, an ellipse can be expressed as

r =
a(1− e2)

1+ ecosθ
, (2)

2



where r is the distance from the Sun to the planet, e is the eccentricity of the ellipse, θ is

the angle between the planet’s current position and the perihelion position, and a is the

semi-major axis.

Like Kepler, Issac Newton investigated the dynamics of our Solar System. In his

Principia, he states his laws of motion and the law of universal gravitation, and provides

the derivation of Kepler’s law of planetary motion. Newton’s three laws of motion are:

1) A body remains in a state of rest or in uniform motion unless a force acts upon it.

2) The force experienced by a body is equal to the rate of change of its momentum.

3) To every action there is an equal and opposite reaction.

His law of universal gravitation states that every particle with a mass attracts every other

particle with a force that is directly proportional to the mass and inversely proportional to

the square of the distance; the magnitude of the force |F| between any two masses, m1

and m2 separated by a distance r can be expressed as

|F|= G
m1m2

r2 , (3)

where G is the gravitational constant. Using equation (3), Newton confirmed Kepler’s

empirical laws and showed that the resulting motion of a planet around the Sun is a

mathematical curve called a conic section.

The motion of two bodies moving around their common center of mass can be solved

analytically and the resulting motion is closed in inertial space. The motion of the bodies

becomes complicated when an additional body is introduced into the system. In this

three-body problem, each set of initial conditions leads to different outcomes, making the

trajectories of the bodies unpredictable and the solution unobtainable. Between

1784−1786, the French mathematician, Pierre Simon de Laplace, attempted to solve the

instability problem by studying the Sun, Jupiter, and Saturn system. Laskar’s (2013)

historical review of planetary stability in our Solar System provides the observations that

3



showed that Jupiter was gradually moving closer to the Sun while Saturn was moving

away from it. This was based on the previous work by Kepler, Lagrange, and other

astronomers working on the problem. Laplace attempted to understand the behavior of

these planets by studying the irregularities in the semi-major axes of Jupiter and Saturn.

He looked at the orbital energies and found that the quantity

mJ

aJ
+

mS

aS
, (4)

must remain constant according to Newton’s laws, where mJ and mS are the masses and

aJ and aS are the semi-major axes of Jupiter and Saturn, respectively. Using Kepler’s third

law, in the form of n2a3 = µ , the ratio between the mean motions, nJ and nS, is

nS

nJ
=−mJ

mS

√
aJ

aS
. (5)

The mean motions of Jupiter and Saturn are commensurate with each other in a 5 : 2 ratio

between their orbital periods; that is, Jupiter orbits the Sun five times while Saturn orbits

two in a given amount of time. This discovery was called the Great Jupiter-Saturn

Inequality and was claimed to be the most important advance in astronomy since Issac

Newton. Despite its importance, the methods of Laplace remained inconclusive when

applied to the motion of the three-body problem: When the system is subjected to

different initial conditions, the outcome is unpredictable.

In the 19th century, Henri Poincaré showed that the three-body problem does not lead

to a closed-form solution by looking at a special case. In his restricted circular three-body

problem (RC3BP), he showed that there are an infinite number of periodic solutions. In

the RC3BP, two of the bodies follow circular orbits around their common center of mass

while the mass of the third body is neglected. Not only are there many solutions, but the

sensitivity to the initial conditions impacts the trajectories of the bodies. If the initial

conditions are varied slightly, the trajectory leads to a different path every time.

4



Poincaré’s work on the three-body problem and RC3BP became the mathematical basis

for chaos theory, which involves the sensitivity of dynamical systems to initial conditions.

A disadvantage of Poincaré’s era was the lack of computing power necessary to

calculate the equations of motions for the three-body problem. With the advent of modern

powerful computers, we are equipped to apply experimental and numerical methods to

multi-body systems and solve nonlinear equations of motion, including those of the

planetary instability problem. Modern computing power also allows for simulations of

these dynamical systems over large time scales, which may be used to predict future

events such as the evolution of planetary systems.

1.3 Previous Studies of the Planetary System Stability

We now provide the definition of stability, background on the previous studies of

instability in planetary and binary star systems, the consequences of stability, and a

calculation of the apparent brightness of a binary star companion.

1.3.1 Definition of Stability

The definition of stability depends on the type of study being conducted or the

deviations that are being tracked with the orbital elements. Graziani and Black (1981)

defined stability in terms of secular changes in the planetary orbits, which depend on the

separation distance and the mass ratio of the companion planets. Pendleton and Black

(1983) defined a lack of stability to be when the orbit of a planet develops a clear secular

trend or when erratic behavior can be observed. Weigert and Holman (1997) defined

stability in terms of the change in inclination of the orbital plane of the binary pairs in the

system. Stability depends on the orbit elements of the system including the semi-major

axis (a), the eccentricity (e), the inclination (i), and the ratio between the masses (µ) in

the system. There are other important orbital elements used for describing stability such

as the time of pericenter passage (τ), the angle of the ascending node (Ω), and the

argument of pericenter (ω). The reader is referred to any standard text of celestial
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mechanics such as Danby (1962) or Murray and Dermott (1999) for information about the

orbital elements. In this thesis, when we refer to an orbit being unstable, we mean the

planet deviates from the initial path or shows erratic behavior.

1.3.2 Instability in Three-body Systems

Graziani and Black studied the stability constraints on three-body systems, in

particular, a system composed of a single star and two planetary companions. Based on

the numerical experiments they performed, they showed that a system made up of the Sun

and two masses like Jupiter, separated by 0.28 AU located at the present day positions of

Venus and Earth, were stable for up to 104 years. This result extended the findings by

Donnison and Williams (1978) who showed such a system was stable for 103 years.

Graziani and Black also showed that a system made up of the Sun, Jupiter, and Saturn

becomes unstable when the masses of the planets increase by a factor of 30 greater than

the original mass values and the system remains stable when the masses are a factor of 20

or less. They confirmed the result of Nacozy (1976) who showed the factor was 29.5

when the planets were separated by a distance of 4.34 AU. In their own study, they

explored the stability constraints of the Sun, Neptune, and Uranus system when the

planets were separated by 10.9 AU. The main result that they determined was the

condition for orbital stability. They compared the critical mass µcrit and the mean mass µ

of the planets and the star. When µ ≥ µcrit, the companion planets becomes unstable

within a few orbits. For this condition, they determined the expression

µcrit = 0.175∆
3(2−∆)−

3
2 , (6)

and used

µ =
1
2
(m1 +m2)

Mstar
, (7)
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to determine the ratio of the masses, where m1 and m2 are the masses of the planetary

companions, Mstar is the mass of the star, and ∆ = 2(R−1)
R+1 is the minimum (initial)

separation between the companions in units of their mean distance from the central star

where R = R2
R1

. For this system, they varied the distance between 0.39 ≤ ∆R ≤ 14.4 and

found instabilities when 5.7×10−3 ≤ µ ≤ 6.7×10−3. They found when one of the

masses in the system is five times larger than the mass of Jupiter, the system displays

instabilities.

Pendleton and Black (1983) furthered the criterion for dynamical instability in the

three-body problem. They constructed their system as a binary star system with a planet

orbiting both within and outside of the binary pair and confirmed the stability criterion

derived by Graziani and Black. They investigated different types of orbital configurations

including inner and outer planet configurations and tested how inclination and eccentricity

of the binary pair influences the stability of the orbit of the tertiary body. In their studies,

they showed that prograde orbits are stable while the same system is not stable for

retrograde orbits. To test the orbital stability on inclination, they set the binaries to have

equal mass where the tertiary mass was equal to the mass of Jupiter. Their results showed

that inclination has a strong effect on the inner planetary configuration and instability

occurs between 50◦ ≤ i ≤ 70◦. Inclination did not have an effect on stability for the outer

planet configuration. Their main experiment was studying the effects of eccentric binary

orbits on the orbital stability of a planetary body in the inner planet configuration. When

the tertiary mass was much greater or much less than the reduced mass of the binary pair,

orbital stability was a strong function of eccentricity.

1.3.3 Stability in Binary Star Systems

In this section, we consider the stability of a planet in a binary star system. Two

important studies that have been carried out are by R. Dvorak et al. (1989) and Wiegert

and Holman (1997). Both of these studies consider the eccentricity of a binary star system
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as a function of the ratio of the binary masses and treat their systems as an elliptical

three-body problem. Dvorak et al. derived the stability limits of a planetary orbit around

the binary pair and focused on the relationship between the eccentricity and the mass ratio

of the binary pairs. Wiegert and Holman calculated the limits on the semi-major axis. The

critical semi-major axis was determined for the ranges 0 ≤ e ≤ 0.8 and 0.1 ≤ µ ≤ 0.9 and

can be expressed as

acrit = [(0.464±0.006)+(−0.380±0.010)µ +(−(0.631±0.034)e

+(0.586±0.061)µe+(0.150±0.041)e2 +(−0.198±0.074)µe2]ab, (8)

where ab is the binary semi-major axis, e is the binary eccentricity, and µ is the mass

ratio. Using this result, they were able to identify regions of phase space where planets

can persist in a binary star system over large time scales.

Alpha Centauri is located 1.3 parsecs from the Sun which makes it a prime system to

look for the existence of planets and a logical starting point for theoretical investigations

of stability. Wiegert and Holman (1996) studied the Alpha Centauri system and they

investigated the long-term stability of small bodies near the central binary stars, Alpha

and Beta. They considered a system composed of stars forming a binary pair, with a

semi-major axis of 23 AU. The third body is orbiting the pair at a distance of 12,000 AU.

The smaller body began on a circular orbit and the simulation was carried out for 32,000

binary periods or approximately 2.5 Myr. Their results showed that a body is unstable in

the interior and exterior regions of the binary pair when the semi-major axis of the

particle is ap < 3ab and ap > 0.2ab, where ap and ab are the semi-major axes of the

particle and the binary pair. The simulation cannot assure the stability of a planet, but they

identified important unstable regions where the planet cannot exist. In the Alpha Centauri

system, the planet cannot exist where ap < 3.5 AU and ap > 70 AU from the primary.

8



1.3.4 Consequences of Stability

Due to the difficulties of solving problems involving the dynamics of interacting

bodies, we must apply numerical methods to study these systems. Numerical methods

have become a fundamental technique for understanding physical problems in celestial

mechanics. Pakter and Levin (2018) use Runge-Kutta methods with an adaptive step size

to demonstrate that planetary systems are susceptible to events such as the collision or the

ejection of planets. They claimed that finding initial conditions that lead to the stability of

planetary orbits is impossible because of the finite time limit of the simulations. We

cannot say, with certainty, how long our Solar System will be stable. Another study, by

Batygin and Laughlin (2002), integrated the orbital motions of the solar system over 20

Gyr. Their experiments showed that Mercury falls into the Sun approximately 1.261 Gyr

from now, and in another they showed that Mercury and Venus collide in 862 Gyr. Mars

was also ejected from the system in the experiment as a result of Mercury’s unstable orbit.

1.3.5 The Planet Nine Hypothesis

Planet Nine is a hypothetical planet that could exist in the outer region of the solar

system between 400−800 AU. It is proposed that the addition of a planet like Planet

Nine could explain the gravitational effects on the clustering of the Extreme

Trans-Neptunian Objects and the high inclinations of the orbits of these objects. The

Planet Nine hypothesis proposed by Batygin and Brown (2019) is inconclusive; however,

there are interesting features about the stability of the solar system if Planet Nine were to

exist. One of these features is that our Solar System could have contained two stars during

formation of the solar system. In a binary star system, it is plausible for a planet like

Planet Nine to exist in the outer region of the system. Siraj and Loeb (2020) investigated

how a binary star model could explain the existence of Planet Nine or the possibility that

Planet Nine is a rogue planet from another system and was captured by our Solar System.

In their study, they showed that an equal-mass, temporary companion to the Sun increased
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the likelihood of a binary star system capturing Planet Nine. Computer simulations have

shown binary star systems are efficient at capturing planets and objects similar to those in

the Oort Cloud, including Planet Nine. The model proposed by Siraj and Loeb favors

capturing Planet Nine over previously studied lone star models.

1.4 Apparent Brightness of a Binary Star Companion

If a companion star exists, then we would be able to see if it is close enough or if it is

bright enough. An illustrative exercise (Romanowsky, 2021) shows us the luminosity of

the companion star mentioned by Siraj and Loeb. We assume the Sun and the hypothetical

companion star are identical light sources. We call the apparent magnitudes of the Sun

and the companion star, msun and mstar, and the distance the stars are located from the

Earth, dsun and dstar. The relationship between the luminosity of a star and its apparent

magnitude can be expressed as

Ia

Ib
= (2.512)(mb−ma), (9)

where ma,mb are the apparent magnitudes of the stars and Ia, Ib are the intensities of those

stars.

The apparent magnitude depends on the distance from the Earth to the Star. A light

source becomes fainter as the star moves away from the Earth or becomes brighter the

closer it is. We can use the relationship between the intensity and the distances of the star.

Since the light sources are identical, the ratio of the intensities can be expressed as

Ia

Ib
=
(da

db

)2
, (10)

where da,db are the distances from the observed position.

10



We combine equations (9) and (10) to obtain a relationship between the apparent

brightness and the distance

mb −ma = 5.0× log10

(db

da

)
. (11)

The values from the Sun, msun =−26.5 and dsun = 1 AU, are used to calculate the

apparent brightness of Star 2. The distance to Star 2 will be the distance proposed from

Siraj and Loeb, dstar = 1500 AU. We can calculate the apparent brightness of the Star 2:

mstar = msun +5.0× log10

(dstar

dsun

)
,

mstar =−26.5+5.0× log10

(1500AU
1AU

)
,

mstar =−10.61.

(12)

The result shows the apparent magnitude of Star 2 is −10.61. The apparent magnitude

falls between the apparent magnitude of a full Moon (−12.5) and Venus at its brightest

(−4.4). A quick calculation evaluates the brightness of Star 2 compared to the Moon,

yielding the following result:

bstar

bmoon
= (2.512)(mmoon−mstar),

bstar

bmoon
= (2.512)[−12.5−(−10.6)],

bstar

bmoon
= 0.175.

(13)

The brightness of the star is about 17.5% the brightness a full Moon. A star with this

brightness would be visible in the night sky, even at a distance of 1500 AU. However, we

do not observe such a star. This analysis does not answer whether the star exists but gives

us some intuition about the brightness of a hypothetical star in the night sky. The

hypothetical star has to be orders of magnitudes less in luminosity, the star must be farther

away, or it does not exist at all.
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2 THE TWO-BODY PROBLEM

The two-body problem (2BP) is important in celestial mechanics because we can

approximate important orbital dynamics using a point mass moving under the

gravitational influence of a central, dominant mass. For example, we can analyze a

smaller body like the Earth orbiting around a larger central body like the Sun. The mass

of Earth, which is mE = 5.94×1024 kg, moves around the Sun, mS = 1.99×1030 kg, in

an elliptical orbit with a semi-major axis a. When we investigate the 2BP, we obtain

constants of motion which are crucial to the analysis. In this chapter, we present the

physics of the 2BP and derive the constants of motion. These are the orbital specific

energy, specific angular momentum, and the eccentricity or the Laplace-Runge-Lenz

vector. Then we look at the results from simulating the 2BP to verify that our code runs

correctly. Lastly, we derive the stability condition in the 2BP using the analogy of the

harmonic oscillator.

2.1 The Physics of the Two-body Problem

The physics of the 2BP is well known and we will discuss its main components. We

will first look at the gravitational forces between two point masses in Cartesian space.

Figure 1 shows the configuration of the system relative to a fixed origin. The masses, m1

and m2, are initially located at some positions in space, which we label as vectors, r1 and

r2. The positions of the masses are relative to a fixed origin and the motion is observed in

an inertial reference frame.

We assume the gravitational interaction between the masses is an attractive force,

dependent on the separation distance between the pair. We label the force as a function of

distance

F = F(r)r̂. (14)
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m1

m2

r2

r1

r

Fig. 1. Two point masses, m1 and m2 relative to a fixed origin in space. The position
vectors are labeled r1 and r2, and r is the difference in the position vectors.

The separation r between the bodies is the difference between their position vectors

r = r2 − r2. (15)

The unit vector in the direction of r is

r̂ =
1
r

r. (16)

Using Newton’s second and third law, we obtain the pair of equations used to analyze

the 2BP. We end up with the equations below:

−F = m2r̈2, (17)

and

F = m1r̈1. (18)

The accelerations, r̈1 and r̈2, are the second derivatives of the position with respect to

time of the masses; these are the relative accelerations of the masses. The terms can be
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written so that the equations can be expressed as the difference between accelerations

r̈2 − r̈1 =
(
− F

m2
+

F
m1

)
=
(
− 1

m2
+

1
m1

)
F. (19)

The reduced mass of the system can be expressed as µreduced, simplifying equation (19)

µreduced =
1

m1
+

1
m2

=
m1 +m2

m1m2
. (20)

For simplicity, the smaller of the two masses of the system is treated as a point-like

mass. The force is the gravitational force between the masses and the magnitude of the

force is a product of the masses and the inverse-square of the separation distance

|F|= F = G
m1m2

r2 , (21)

where G = 6.674×10−11Nm2kg−2 is the universal gravitational constant. Inserting

equation (21) into equation (19) yields the relative equation of motion for the 2BP

r̈ =−m1 +m2

m1m2
G

m1m2

r2 r̂. (22)

We set µ = G(m1 +m2) to express the equation in a simpler form and we obtain the

equation of motion used in our analysis of the 2BP

r̈+
µ

r3 r = 0. (23)

Later in the discussion, we apply the equation of motion to the Sun-Planet system, where

the planet is each of the planets in the solar system.

2.2 The Constants of the Two-body Problem

The integrals of the 2BP are derived by using the equation of motion (23). The

important constants are the energy integral (C), the angular momentum integral (h), and

the Laplace-Runge-Lenz vector or the eccentricity vector (B). For the analysis, we
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assume m1 will be located at a fixed origin in space and the motion of m2 will be with

respect to m1. This is valid because m1 >> m2.

2.2.1 The Energy Constant

The energy constant is derived by taking the dot product of the velocity vector, ṙ, and

the equation of motion (23)

ṙ ·
(

r̈+
µ

r3 r
)
= 0. (24)

Using dot product rules, we distribute the velocity vector across the equation of motion.

This leads to the equation

ṙ · r̈+
(

µ

r3

)
ṙ · r = 0. (25)

The first term of equation (25) can be re-written as

ṙ · r̈ = 1
2

d
dt
(ṙ · ṙ). (26)

The second term on the right of equation (25) can be re-written as

ṙ · µ

r3 r =
1
2

µ√
(r · r)3

d
dt
(r · r) = d

dt

(
− µ√

r · r

)
, (27)

where |r|= r · r. Next, we combine equations (26) and (27) to obtain

1
2

d
dt
(ṙ · ṙ)+ d

dt

(
− µ√

r · r

)
=

d
dt

(1
2
(ṙ · ṙ)− µ

r

)
= 0. (28)

Integrating equation (28) we obtain the first constant in our problem

1
2
(ṙ · ṙ)− µ

r
=C. (29)

Equation (29) is the energy constant in the 2BP. In this equation C is a constant and

ṙ · ṙ = v2. Equation (29) shows that the orbital energy per unit mass of a body is a

conserved quantity.
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2.2.2 The Angular Momentum Constant

The next constant in the problem is the angular momentum constant. The approach we

take to derive the momentum constant is similar to the method used to derive the energy

constant. We begin by taking the cross product of r with the equation of motion (23)

r×
(

r̈+
µ

r3 r
)
= 0, (30)

or,

r× r̈+
(

µ

r3

)
r× r = 0. (31)

When two vectors are in the same direction, the angle between them is zero and the

magnitude of the cross product will be zero. So the second term on the right hand side of

equation (31) is zero (r× r = 0). The left hand term of equation (31) can be re-written by

taking the anti-derivative of the acceleration vector. We obtain the expression:

r× r̈ =
d
dt
(r× ṙ). (32)

We expand equation (32) by applying the time derivative crossed with the position and

velocity vectors
d
dt
(r× ṙ) = ṙ× ṙ+ r× r̈. (33)

The cross product, ṙ× ṙ = 0, and we can simplify further

r× r̈ =
d
dt
(r× ṙ) = 0. (34)

We integrate equation (34) with respect to time to obtain the angular momentum integral

r× ṙ = h. (35)
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Equation (35) is the angular momentum constant in the 2BP. In this equation, h is a

constant.

The motion of m2 around m1 lies in a plane perpendicular to the direction of h. See

Figure 2 below. This implies the position and velocity of the planet will always lie the

same orbital plane and the motion is confined to lie in this plane only. We have found four

constants of motion for the 2BP: the energy integral (C) and the three components

(hx,hy,hz) of the specific angular momentum (h).

r 

vh (ang. momentum)

z

y

x

m1

m2

Fig. 2. The smaller mass, m2, in motion around m1, in the x-y plane. The angular
momentum vector is always perpendicular to the orbital plane in the z-direction.

2.2.3 The Laplace-Runge-Lenz Vector

The last constant in the problem is the Laplace-Runge-Lenz vector, or the eccentricity

vector, B. We begin by taking the cross product between the angular momentum vector

and the equation of motion (equation 23),

h×
(

r̈+
µ

r3 r
)
= 0. (36)

Expanding, we see that

h× r̈+
(

µ

r3

)
h× r = 0. (37)
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The left term of equation (37) is re-written by taking the anti-derivative of the acceleration

h× r̈ =
d
dt
(h× ṙ). (38)

The definition of angular momentum, h = r× ṙ, is used in the right term of equation (37),

(
µ

r3

)
h× r =

µ

r3 (r× ṙ)× r = 0. (39)

Using the vector triple product rule,

(A×B)×C =−C× (A×B) =−(C ·B)A+(C ·A)B. (40)

We can re-write equation (39) as

µ

r3

[
− (r · ṙ)r+(r · r)ṙ

]
= 0. (41)

The dot product of the position and velocity vector is zero (r · ṙ = 0) because cos π

2 = 0.

These vectors in circular motion under a central force is zero because the vectors are

always perpendicular to each other. The equation becomes

µ

r3 (r · r)ṙ =
µ

r3 rṙ =
µ

r2 ṙ = 0. (42)

We obtain the equation and the anti-derivative of the velocity,

µ

r2 ṙ =
d
dt

(
µ

r
r
)
. (43)

We can combine the results from equations (38) and (43).

h× r̈+
µ

r3 (r× ṙ)× r = h× r̈+
µ

r3

[
(r · r)ṙ− (ṙ · r)r

]
,

=
d
dt
(h× ṙ)+

d
dt

(
µ

r
r
)
,

=
d
dt

(
h× ṙ+

µ

r
r
)
.

(44)
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Equation (44) is in a form that we can integrate with respect to time

d
dt

(
h× ṙ+

µ

r
r
)
= 0. (45)

After integrating the equation (45), we obtain last constant in the 2BP

B = h× ṙ+
µ

r
r. (46)

This is the Laplace-Runge-Lenz vector.

The eccentricity vector is a dimensionless vector that describes the shape and

orientation of the orbit of one astronomical body around the other. This vector is the last

constant of motion and the eccentricity vector is a constant quantity wherever the planet is

in the orbit. In the 2BP, if we assume the planet is in a circular orbit around the central

mass, the eccentricity is zero e = 0.

2.3 Results from the Two-body Problem

We created a program to simulate each of the planet’s orbits in the solar system

around the Sun over 165 Earth years, or approximately the time it takes for Neptune to

orbit the Sun once. The program generates the positions, velocities, orbital energies, and

angular momenta of each of the planets and plots the data. Using the equation of motion

(23) from the 2BP, the planet’s accelerations are determined from the gravitational force

of the Sun on the planet. The velocities and the positions of the planet are determined by

solving a set of second-order differential equations. In Figure 3 below, we plot the x and y

positions of the inner and outer planets with the Sun at the center (red dot). In the left

image, the orbits of Mercury (black), Venus (yellow), Earth (blue), and Mars (red) are

plotted. In the image on the right, the orbits of Jupiter (green), Saturn (cyan), Uranus

(pink), and Neptune (black) are plotted. In each of the cases, the eight planets in the 2BP

are assumed to be circular orbits revolving around the Sun. This means we can take any
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mass, up to the mass of Jupiter, and simulate the trajectory of the body, and we will

obtain a circular orbit.

Fig. 3. The orbits are shown for the inner rocky planets: Mercury’s, Venus’, Earth’s, and
Mars’ orbit are shown (on the left), and the outer gas planets: Jupiter’s, Saturn’s, Uranus’,
and Neptune’s orbit (on the right) in the 2BP. The simulation was run for 165 Earth years
and each of the planets display circular orbits.

We also use our program to calculate the orbital energy and angular momentum of

Earth in the 2BP. In Figure 4, the Earth’s energy and angular momentum are plotted over

time. In the figure, we see that the values remain constant and do not change over the

course of the simulation. In the previous sections, we derived the equations (29) and (35)

and showed that the energy and momentum integrals were conserved quantities in the

2BP. Using these results, we also confirm that our program runs successfully.
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Fig. 4. Earth’s orbital energy and angular momentum remain constant over the entire
simulation, 165 Earth years, in the 2BP.

See Table 1 for the parameters of each of the planets used in our simulation. In the

table we included the initial positions and orbital velocities of each of the eight bodies.

Table 1. The initial conditions for each of the eight planets in the 2BP. Each of the planets
begin at the perihelion position with a velocity in the y direction.

Initial Conditions

Planet x0(109m) y0(109m) vx0(m/s) vy0(m/s)

Mercury 46.0 0.0 0.0 47,400

Venus 107.5 0.0 0.0 35,000

Earth 147.1 0.0 0.0 29,000

Mars 206.6 0.0 0.0 24,100

Jupiter 740.9 0.0 0.0 13,100

Saturn 1352.6 0.0 0.0 9,700

Uranus 2741.3 0.0 0.0 6,800

Neptune 4444.5 0.0 0.0 5,400
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2.4 The Stability Condition

We will derive the stability criterion for the 2BP using methods similar to Hamill

(2010). Suppose a small perturbing force acts on a planet orbiting the Sun. The perturbing

force will cause the planet to oscillate around the equilibrium position. When the force

becomes large enough, the planet can become unstable around the equilibrium position

and the orbit is no longer circular. In the 2BP, the central force is a gravitational force

with an inverse-square dependence on distance. For the sake of this analysis we assumed

that the central force can take on different kinds of radial dependence and in the

subsequent discussion, the force will be general until specifically defined. Suppose the

force is a function of the radial position only

F(r) = F(r)r̂. (47)

The equation of motion can be transformed from Cartesian coordinates into polar

coordinates, where the scalar equations are

F(r) = m(r̈− rθ̇
2),

0 = m(rθ̈ +2ṙθ̇).

(48)

Here r̈ is the radial acceleration, ṙ is the radial velocity, θ̇ is the angular velocity, and θ̈ is

the angular acceleration. Using the definition of the angular momentum l = r×p and

applying it to a body in motion around another body in a circular path, the following

scalar relation can be obtained

l = mvr = mr2
θ̇ , (49)

where

θ̇ =
l

mr2 . (50)
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Using this relation the equation of motion can be reduced to a one-dimensional equation

where the dependence is only on distance, r,

m
[
r̈− r

( l
mr2

)2]
= m

[
r̈− l2

m2r3

]
= F(r),

mr̈ = F(r)+
l2

m2r3 .

(51)

The orbit of a planet remains at a constant radius, a, over time. Since a is a constant, the

first and second time derivatives with respect to the radius will be equal to zero.

r = a = constant ⇒ ṙ = r̈ = 0.

At radius a, the gravitational force on a planet in a circular orbit is

F(r = a) =− l2

ma3 . (52)

Suppose the planet is given a slight nudge from its original trajectory, given by a

perturbing force. The planet’s radial distance, r, from the central body will be changed by

ε where ε << a

r = a+ ε. (53)

We substitute the approximate radial distance into the equation of motion

m
d2

dt2 (a+ ε) = F(a+ ε)+
l2

m(a+ ε)3 . (54)

Before we move on, we briefly mention the Taylor series and Binomial expansions.

Using these approximations, our equation of motion can be simplified. The

approximations we will use in equation (54) are given below

1) Taylor’s Series

f (a+∆x) = f (a)+∆x
d f (a)

dx
+

1
2!

∆x2 d2 f (a)
dx2 + ...,
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2) Binomial Expansion

(1+ x)m = 1+mx+
m(m−1)

2!
x2 + ....

Applying these expansions to equation (54), we obtain the resulting expansions

f (a+ ε) = f (a)+ ε
d f
dr

+
1
2!

ε
2 d f 2

dr2 + ..., (55)

and
1

(1+ ε/a)3 = (1+ ε/a)−3 = 1−3
ε

a
+6

(
ε

a

)2
+ ... (56)

We re-state the equation of motion and substitute the approximations to obtain the

expanded equation of motion,

mε̈ = F(a+ ε)+
l2

ma3(1+ ε/a)3 . (57)

Applying the expansions, we obtain the following equation

mε̈ = F(a)+ ε
dF
dr

+
1
2!

ε
2 dF2

dr2 + ...

=
l2

mr3 −3
l2

mr3
ε

a
+6

l2

mr3

(
ε

a

)2
+ ....

(58)

For our purpose, it is sufficient to neglect the second and higher-order terms

mε̈ = F(a)+ ε
dF
dr

+
l2

ma3 −3
l2

ma3
ε

a
. (59)

Using equation (52) with equation (59), we can simplify the expression and find terms

that cancel out to yield

ε̈ = ε

[ 1
m

dF
dr

−3
l2

m2a4

]
. (60)
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We arrive at an expression identical to the equation that represents simple harmonic

motion

ε̈ + εΓ = 0, (61)

where Γ =−3 l2

m2a4 +
1
m

dF
dr .

When Γ < 0, the general solution has the form dependent on an exponential

ε(t) = αe+
√

|Γ|t +βe−
√

|Γ|t . (62)

When Γ > 0, the general solution has the form dependent on a linear combination of sines

and cosines

ε(t) = γ sin(
√

Γt)+η cos(
√

Γt). (63)

According to equation (62) the general solution depends on the behavior of the

exponential. As the time increases, the term with the negative exponential will go to zero

leaving a solution with the form of a positive exponential. The orbit of a planet will be

unstable over time and the distance r = a+ ε will grow without any constraints. On the

other hand, if Γ > 0, the solution involves the behavior of the sine and cosine. The

solution will oscillate about the equilibrium radius position (r = a). Consequently, the

stability condition for the orbit is

0 < 3
l2

m2a4 −
1
m

dF
dr

. (64)

Let us consider an example assuming the central force is inversely proportional to r2,

that is, the form of the gravitational force in the 2BP. Taking the derivative of the force

with respect to the radial position, we obtain

F(r) =−G
Mm
r2 ⇒ dF(r)

dr
= 2G

Mm
r3 . (65)
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Evaluating equation (65) for r = a, the stability condition becomes

−3
a

F(a)− dF
dr

=
3
a

(GMm
a2

)
− 2GMm

a3 =
GMm

a3 , (66)

so Γ > 0 and the orbit is stable. That is, the force of gravity leads a stable planetary orbit.

Generally, the central force can be extended to any power of r

F(r) =− k
rm ⇒ dF

dr
=

km
am+1 , (67)

where k is a constant. Again, using equation (65), we arrive at the stability condition

−3
a

(
− k

am

)
− km

am+1 =
k

am+1(3−m)
< 0,

m < 3.
(68)

The derivation demonstrates there cannot be anything higher than an inverse square law in

terms of the stability. The inverse square law leads to stable orbits in the solar system.

Anything higher in order, will result in the planet spiraling away from its original orbit.
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3 THE THREE-BODY PROBLEM

In this chapter we provide an introduction to the three-body problem (3BP) and derive

the disturbing function. We also apply a special perturbation method to show how another

body in the system influences the orbit of Earth. Lastly, we briefly compare the 2BP and

3BP results.

3.1 Three-body Problem Equations

In the N-body system, with mutually interacting bodies, the acceleration of a body of

interest, i, can be expressed as:

r̈i =
N

∑
j=1

Gm j(r j − ri)

r3
i j

, (69)

where r̈i is the acceleration vector of a body i, m j is the mass of body j, ri and r j are the

position vectors, and ri j is the distance between the mass i and j. For the purpose of this

chapter, let N = 3 and i = 1, representing the acceleration of the body of interest. Then,

the acceleration of body 1 due to the other masses in the system, m2 and m3, can be

expressed as:

r̈1 =
N=3

∑
j=2

Gm j(r j − r1)

r3
1 j

,

r̈1 =
Gm2(r2 − r1)

r3
12

+
Gm3(r3 − r1)

r3
13

.

(70)

3.2 The Disturbing Function

In the following derivation of the disturbing function, we use methods similar to those

found in Murray and Dermott (1999). Suppose an inner mass, mi, exists in an elliptical

orbit around a central mass, mc. When another mass is introduced into the system, m j, the

system is composed of three bodies. This is the three-body problem. The extra body in the

system creates additional gravitational forces between each of the bodies. The disturbing
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function is used to make the problem easier to analyze and mainly used to look at

deviations in the orbital elements.

Fig. 5. The position vectors ri and r j of the masses mi and m j, with respect to the central
mass, Mc. Rc,Ri, and R j are the position vectors with respect to an arbitrary, fixed origin.

The position vectors (Rc,Ri,Rj), give the location of the masses (Mc,mi,m j) relative

to a fixed origin. Assume ri and r j are the position vectors of the secondary masses

relative to the primary. See Figure 5. By definition, the norms of ri, r j, and r j − ri are

|ri|=
√

x2
i + y2

i + z2
i ,

|r j|=
√

x2
j + y2

j + z2
j ,

|r j − ri|=
√

(x j − xi)2 +(y j − yi)2 +(z j − zi)2.

(71)

Using Newton’s laws of motion and the law of universal gravitation, the equations of

motion for each of the masses in the inertial reference frame are

mcR̈c = Gmcmi
ri

r3
i
+Gmcm j

r j

r3
j
, (72)

miR̈i = Gmim j
r j − ri

|r j − ri|3
−Gmimc

ri

r3
i
, (73)
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m jR̈ j = Gm jmi
ri − r j

|ri − r j|3
−Gm jmc

r j

r3
j
. (74)

The acceleration of mi and m j relative to the primary can be expressed as

r̈i = R̈i − R̈c,

r̈ j = R̈ j − R̈c.

(75)

By using the equations (73), (74), and (75), we obtain the following set of equations

r̈i +G(mc +mi)
ri

r3
i
= Gm j

[ r j − ri

|ri − r j|3
−

r j

r3
j

]
,

r̈ j +G(mc +m j)
r j

r3
j
= Gmi

[ ri − r j

|ri − r j|3
− ri

r3
i

]
,

(76)

which can be re-written as the gradient of a scalar function

r̈i = ∇i · (Ui +Ri) =
(

î
∂

∂xi
+ ĵ

∂

∂yi
+ k̂

∂

∂ zi

)
(Ui +Ri),

r̈ j = ∇ j · (U j +R j) =
(

î
∂

∂x j
+ ĵ

∂

∂y j
+ k̂

∂

∂ z j

)
(U j +R j),

(77)

where

Ui = G
(mc +mi)

ri
,

U j = G
(mc +m j)

r j
,

(78)

and

Ri =
Gm j

|r j − ri|
−Gm j

ri · r j

r3
j

,

R j =
Gmi

|ri − r j|
−Gmi

r j · ri

r3
i

.

(79)

The term R is the disturbing function which arises from the potential between the

secondary masses mi and m j.
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3.3 Cowell’s Perturbation Method

Cowell’s method is a perturbation method applied to the 3BP. In Figure 6, we

illustrate two bodies with mass, mi and m j, revolving around the central mass, Mc. We

have seen in the 2BP, mi follows an orbit around the central body. When another body is

considered in the system, such as m j, we need to account for the gravitational influence it

has on mi. In the figure, we indicate that mi deviates from its initial path due to this

attraction. We can call this deviation from its initial path a perturbation.

Fig. 6. Cowell’s perturbation method. A simple perturbation applied to the bodies, Mc, m j,
and mi. The perturbation changes the orbit of mi, showing a deviation from its initial path.

We begin with the equations of motion of the 2BP with a perturbing force as a

function of distance. The equation of motion with a perturbation force can be written as

r̈+
µ

r3 r = F(r), (80)

where F(r) is the perturbing force. For numerical purposes, equation (80) is reduced to a

set of differential equations

ṙ =
dr
dt

,

r̈ = F(r)− µ

r3 r,
(81)
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where ṙ and r are the velocity and the radius of the perturbed body with respect to the

Sun. In vector components, equation (81) becomes

ẋ = vx ẍ = F(r)x −
µ

r3 x,

ẏ = vy ÿ = F(r)y −
µ

r3 y,

ż = vz z̈ = F(r)z −
µ

r3 z,

(82)

where r =
√

x2 + y2 + z2.

As an example, we will consider how another planet, such as Jupiter, perturbs the

Earth in the 2BP. We will label m j as Jupiter, treated as the perturbing body, and Earth is

the perturbed body, mi. The equations of motion for the Earth can be written in terms of

the x,y, and z components below

ẋ = vx ẍ =−η

[xSE

r3
SE

− xJE

rJE

]
− µ

r3 x,

ẏ = vy ÿ =−η

[ySE

r3
SE

− yJE

rJE

]
− µ

r3 y,

ż = vz z̈ =−η

[zSE

r3
SE

− zJE

rJE

]
− µ

r3 z,

(83)

where η is a constant dependent on the masses of the Sun and Jupiter.

The results from Cowell’s method are highlighted in Figure 7 below. The figure shows

the orbits of Earth and Jupiter using the equations of motion when the perturbing force

exists and when it is absent. In the image on the left, we can observe a deviation of

Earth’s orbit when Jupiter is included (red) in the system and when Jupiter is ignored

(blue). In the image on the right, we can observe that Jupiter’s orbit is not effected by the

gravitational influence from Earth. As seen in the figure, the blue and red curves are

overlap.
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Fig. 7. The image on the left displays Earth’s orbit in the unperturbed and perturbed case.
The image on the right displays Jupiter’s orbit in the unperturbed and perturbed case.
Cowell’s method is used for the simulation. The blue line represents the initial orbit of
Earth in the two-body problem, red presents the perturbation due to Jupiter. There is no
effect on the orbit of Jupiter from the Earth as shown in the image on the right.

In general, there are other forces to consider when the number of bodies in the system

increase. These will be mutual gravitational forces between the central, larger body and a

planet and a mutual force between the planets. The behavior of such a system is largely

dependent on the masses and the distances between these masses.

3.4 Two-body vs. Three-body Problem

We will discuss the conserved constants mentioned before. We will limit our the

analysis to the energy and angular momentum of the Earth in the 2BP and how these

quantities change when another planet is included in the system. Here, we introduce

Jupiter into the system. Jupiter is chosen because after the Sun, it is the next most

influential body in the solar system, having a mass on the scale of 1027 kg. Here we will

compare the results of the 2BP versus 3BP.

In the Figures 8 and 9 below, the specific energies and angular momenta as a function

of time are plotted. The simulation was run for 165 Earth years, or approximately the
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time it takes Neptune to orbit the Sun once. As shown in Figure 8, the orbital energy of

Earth (green line) in the 2BP remains constant over the entire period. The value of this

energy is C =−4.51×108 Jkg−1. However, when we include Jupiter in the system, the

energy of the Earth fluctuates between the values of −4.75×108 <C <−4.65×108.

Fig. 8. The image on the left displays the specific energies of Earth in the 2BP and 3BP
plotted over 165 Earth years. The blue line represents the specific energy of Earth in the
3BP and the green line represents the specific energy of the Earth in the 2BP. The specific
energy in the 2BP remains constant and the specific energy in the 3BP varies. The image
on the right is an expanded view of the image on the left, only covering 15 years time.
This shows the oscillations in energy quite clearly.

In Figure 9 the specific angular momentum is plotted over time in the 2BP and 3BP.

The simulation was run over the same period of time as Figure 8. From the plot, we can

see the specific angular momentum value in the 2BP is around |h|= 4.42×1015 kgm2s−2

and remains constant over the entire simulation. For the 3BP, the angular momentum

varies between 4.30×1015 < |h|< 4.342×1015.
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Fig. 9. The image on the left displays the specific momenta of Earth in the 2BP and 3BP
plotted over 165 Earth years. The blue line represents the specific momentum of Earth in
the 3BP and the green line represents the specific momentum of the Earth in the 2BP. The
specific momentum in the 2BP remains constant and the specific momentum in the 3BP
varies. The image on the right is an expanded view of the image on the left, only covering
15 years time. This shows the oscillations in angular momentum quite clearly.

In the 3BP, the positions and velocities of the three masses are used to determine the

acceleration using Newton’s laws. This type of system has no closed-form solution and

numerical methods are required to analyze the motion. The problem can be simplified by

restricting the mass of interest, moving under the influence of the other two larger masses.

The mass of interest is negligible which means the effect that this planet has on the other

two larger masses is too small to matter, which we have shown. This type of system can

be analyzed using the approach used to study the 2BP where the bodies are moving

around the center of mass. Notice the 2BP and 3BP are special cases of the much harder

problem, the N-body problem. The additional planetary bodies create mutual gravitational

forces between each other, the Sun-Planet interactions and the Planet-Planet interactions,

and over a long period of time, lead to unpredictable motion. In this thesis, we will look

at the three-body problem containing the Sun-Earth-Jupiter system and observe how the
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orbits change over time due to these gravitational interactions. We will treat Jupiter as our

second star in the system but before we do this, we need to discuss the numerical methods.
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4 NUMERICAL METHODS

In this chapter we present two numerical methods used to compute the orbital

elements for the 2BP and 3BP. The first method we used is called the Euler-Cromer

method and the second is the Runge-Kutta 4th order method. Both methods are used

numerically to obtain a solution for a system of ordinary differential equations (ODEs).

The type of ODEs that come up in celestial mechanics are second order equations and the

best way to handle them is to break them down into a set of two first order equations. The

type of accuracy in the solution depends on the numerical method. In this thesis, we

compare the Euler-Cromer and Runge-Kutta Method and justify why the Euler-Cromer

method is sufficient for our computation. We also outline the algorithm used to obtain a

solution of the differential equations presented in Chapter 2.

4.1 Euler-Cromer Method

The Euler-Cromer method is designed to integrate differential equations given an

initial set of conditions. This method is used to approximate the solution to an

initial-value problem when the differential equation cannot be solved analytically. We

begin by stating the general form from the Euler method

yn+1 = yn +h
dy
dx

, (84)

which advances the solution from yn to yn+1. This formula uses the derivative at the

beginning of the interval and advances the solution through a step size h. The step size

error is one power smaller than the correction O(h2). The Euler method is not

recommended due to the instability of the solutions. In this thesis, we choose to use the

Euler-Cromer and Runge-Kutta 4th order methods because these methods are stable and

yield highly accurate solutions.
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The Euler-Cromer method can be applied to a pair of differential equations of the

form

ẋ = f (t,x),

ẍ = g(t,x),
(85)

where f and g are given functions and x, ẋ may be scalars or vectors. The differential

equations are solved with the initial conditions x(t0) = x0 and ẋ(t0) = ẋ0. The method

produces approximate discrete solutions by iterating

ẋn+1 = ẋn +g(tn,xn)∆t,

xn+1 = xn + f (tn, ẋn)∆t,
(86)

where ∆t is the time step and tn = tn +n∆t is the time after n steps. The functions f

depend on the time and position at the nth step. This method is a first-order

approximation, where the error of the computer solution depends on the time step.

The Euler-Cromer method uses vn+1 in the equation for xn+1 while Euler uses vn. The

Euler-Cromer method is a first-order integrator for which the global error depends the

time step. As the time step becomes larger, the global error also becomes larger. Lastly, a

consequence of the Euler-Cromer method, is that the energy is conserved. When the Euler

method is applied, the energy increases steadily over time making the method unstable.

4.2 Runge-Kutta Method

Just like the Euler-Cromer method, the Runge-Kutta methods are used for iterative

methods to approximate solutions of ordinary differential equations. In general, let an

initial value problem take the following form

ẏ = f (t,y) y(t0) = y0, (87)
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where y is an unknown, scalar or vector, function at a time t. A step-size h is chosen to be

non-zero. This method defines the expressions

yn+1 = yn +
1
6

h[k1 +2(k2 + k3)+ k4],

tn+1 = tn +h,
(88)

for n = 1,2, ...,N using

k1 = f (tn,yn),

k2 = f
(

tn +
h
2
,yn +

h
2

k1

)
,

k3 = f
(

tn +
h
2
,yn +

h
2

k2

)
,

k4 = f (tn +h,yn +hk3),

(89)

where N is the number of steps, k1 is the slope at the beginning of the interval, k2 and k3

are the slopes at the midpoint of the interval, and k4 is the slope at the end of the interval.

The yn+1 term is the 4th order approximation of y(tn+1) and the next value yn+1 is

determined by the present value yn. The ki’s are the weighted average where each

increment is the product of the size of the interval, h, and the estimated slope specified by

the function f on the right-hand side of the differential equation. The Runge-Kutta 4th

order method gives the local truncation error on the order of O(h5), while the total

accumulated error is on the order of O(h4).

4.3 Method of Computation

In this section, we develop an algorithm for computing the position and velocity of mi

and m j orbiting around mC at any time. We consider two algorithms in this section. One

presents the method for calculating the accelerations in the 2BP and the second presents

the method for calculating the accelerations in the 3BP. For both of the methods, the goal

is to obtain the positions ri and velocity ṙi of the bodies in motion around the central
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body. The initial positions r0 and velocities ṙ0 of the bodies are given at an initial time t0.

These methods will determine the r and ṙ at time t.

4.3.1 Algorithm No.1: 2BP and Runge-Kutta Method

The following method is used to determine the position and velocity of a mass with

respect to the central body.

1) Determine the masses in the system, mC and mi.

2) Initialize the time t0, position r0, and velocity ṙ of mi.

3) Set the time step size (in seconds, days, years) and the length of the simulation.

4) Compute the energy C and angular momentum h of mi using the equations from

Chapter 2:

C =
1
2
(ṙ0 · ṙ0)−

µ

r0
,

h = r0 × ṙ0.

(90)

5) Compute the semi-major axis and the eccentricity

a =− µ

2C
,

e = 0.
(91)

6) Use the Runge-Kutta algorithm.

a) Compute the coefficients k1,x and k1,y

k1,x = vx,n,

k1,y = vy,n.

(92)

b) Compute the coefficients k1,vx and k1,vy

k1,vx = ax(xn,yn),

k1,vy = ay(xn,yn).

(93)
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c) Compute the coefficients k2,x and k2,y

k2,x = vx,n +
1
2

∆t · k1,vx ,

k2,y = vy,n +
1
2

∆t · k1,vy.

(94)

d) Compute the coefficients k2,vx and k2,vy

k2,vx = ax(xn +
1
2

∆t · k1,x,yn +
1
2

∆t · k1,y),

k2,vy = ay(xn +
1
2

∆t · k1,x,yn +
1
2

∆t · k1,y).

(95)

e) Compute the coefficients k3,x and k3,y

k3,x = vx,n +
1
2

∆t · k2,vx ,

k3,y = vy,n +
1
2

∆t · k2,vy.

(96)

f) Compute the coefficients k3,vx and k3,vy

k3,vx = ax(xn +
1
2

∆t · k2,x,yn +
1
2

∆t · k2,y),

k3,vy = ay(xn +
1
2

∆t · k2,x,yn +
1
2

∆t · k2,y).

(97)

g) Compute the coefficients k4,x and k4,y

k4,x = vx,n +
1
2

∆t · k3,vx ,

k4,y = vy,n +
1
2

∆t · k3,vy.

(98)

h) Compute the coefficients k4,vx and k4,vy

k4,vx = ax(xn +
1
2

∆t · k3,x,yn +
1
2

∆t · k3,y),

k4,vy = ay(xn +
1
2

∆t · k3,x,yn +
1
2

∆t · k3,y).

(99)
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7) Compute the new positions xn+1,yn+1 and velocities vx,n+1,vy,n+1

xn+1 = xn +
1
6

∆t · [k1,x +2(k2,x + k3,x)+ k4,x],

yn+1 = yn +
1
6

∆t · [k1,y +2(k2,y + k3,y)+ k4,y],

vx,n+1 = vx,n +
1
6

∆t · [k1,vx +2(k2,vx + k3,vx)+ k4,vx ],

vy,n+1 = vy,n +
1
6

∆t · [k1,vy +2(k2,vy + k3,vy)+ k4,vy].

(100)

8) Return to step 4 and repeat until the simulation ends.

Note this is done by using the acceleration function in the program. All the following

steps which evaluate ax and ay use the same functions, but with different x and y values.

4.3.2 Algorithm No.2: 3BP and Euler-Cromer

1) Determine the masses in the system, mC, mi, and m j.

2) Initialize the time t0, position r0, and velocity ṙ of mi and m j.

3) Set the time step size (in seconds, days, years) and the length of the simulation.

4) Compute the energy C and angular momentum h of mi using the equations from

Chapter 2:

C =
1
2
(ṙ0 · ṙ0)−

µ

r0
,

h = r0 × ṙ0.

(101)

5) Compute the semi-major axis and the eccentricity

a =− µ

2C
,

e = 0.
(102)

6) Use the Euler-Cromer algorithm.
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a) Calculate the velocities of mi and m j

vxn+1 = vxn+1 +ax(xn,yn)∆t,

vyn+1 = vyn+1 +ay(xn,yn)∆t.
(103)

b) Calculate the positions of mi and m j

xn+1 = xn + vxn+1∆t,

yn+1 = yn + vyn+1∆t.
(104)
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5 RESULTS FROM THE SIMULATIONS

5.1 Initial Set-up and Test Case for the Sun-Earth-Star 2 System

The first case we will simulate is the test case. Initially, we will conduct this test to

confirm the validity of our C++ program. For the test case simulation, we treat the Sun as

the central mass, located at (−7.062×108,0.0) m and other masses in our three-body

system will be the Earth and Jupiter. However, we treat Jupiter as the second star in the

system and call it Star 2. In all of the simulations we run, Earth will begin on the x-axis at

the perihelion position, 1.47×1011 m. For the test simulation Star 2 will begin on the

x-axis at the perihelion position, 7.41×1011 m, but this starting position will change

depending on the simulation. Each of the masses in the system are given an initial velocity

in the +y direction. Earth’s velocity is determined by using Kepler’s third law relating the

orbital period to the orbital velocity. The velocity for the Sun and Star 2 can be

determined by using the equation of motion from the 2BP such that our system begins in a

circular orbit configuration. In each of the figures, the green dot will represent the Sun, the

blue line will represent Earth’s orbit, and the cyan line will represent the orbit of Star 2.

For the test case scenario, the duration of simulation runs for one Neptune year, or

approximately 165 Earth years, in one Earth day increments of 8.64×104 seconds. The

result of the test case is shown below in Figure 10. In the figure, we can observe that the

Earth and Star 2 orbit the Sun at a distance of 1 AU and 4.95 AU from the Sun, which is

placed at the center. We observe that the orbits are both circular, or symmetric with respect

to both axes, and there is no erratic behavior displayed by the Earth. This result was

expected from the theory and we have shown that our code outputs the correct solution.
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Fig. 10. This image displays the results of the test case simulation. The system contains
the Sun at the center and Earth is in an orbit 1 AU from the Sun and Star 2 is in an orbit
4.95 AU from the Sun. The green line represents the Sun’s orbit, the blue line represents
the Earth’s orbit, and the cyan line represents the orbit of Star 2. Earth displays no erratic
behavior.

5.2 Star 2 Located at Perihelion Position, Mass Varied

The next simulation we will initialize the Star 2 location at the perihelion position of

Jupiter and vary the mass beginning with the original mass of Jupiter, MJ0 = 1.90×1027

kg, up to the mass of the Sun, MS ≈ 1030 kg. Star 2 is placed at 7.41×1011 m, or 4.95

AU with the same initial velocity used in the test case. The initial conditions for Earth are

set to the test case parameters, where the initial position is the perihelion position of the

Earth, with the same initial velocity.

In Figure 11 below, the results show when the mass of Star 2 is 1,100,195, and 310

times MJ0 located at 4.95 AU. The top left image is exactly the same as the test case and

we refer the reader to the previous section. When Star 2 has mass of 100 times MJ0 (top

right), we notice the Earth’s orbit begins to expand outward in the radial direction and the

orbit of Star 2 becomes elongated, no longer symmetric. As the mass of Star 2 increases

to 195 times MJ0 (bottom left), we can see that the Earth’s orbit begins in a circular orbit
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Fig. 11. The stability of Earth’s orbit. Star 2 is set at the perihelion position of Jupiter,
7.41×1011 m. The mass of Star 2 is changed beginning with the initial mass of Jupiter,
MJ0 = 1.90× 1027 kg (top left), 100×MJ0 (top right), 195×MJ0 (bottom left), and
310×MJ0 (bottom right).

around the Sun and expands outward, no longer being circular. Eventually, Earth’s

trajectory leaves its initial path around the Sun and escapes, then reaches the orbit of Star

2. We can also observe the oscillating patterns of Earth around Star 2 which then does a

fly-by the Sun and leaves the binary star system. We continue to increase the mass of Star

2. When the mass of Star 2 reaches 310 times MJ0 (bottom right), we observe more
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instabilities with the orbit of Earth. Earth revolves around the Sun for a while, then

eventually leaves to be captured by Star 2. We see that Earth orbits around Star 2 for a

long time but eventually escapes the binary system.

We continue to increase the mass of Star 2 and observe the erratic patterns of Earth’s

orbit in the binary star system. Figure 12 displays the results when the mass of Star 2 is

440,500,905, and 1000 times MJ0 . When the mass of Star 2 is 440 times MJ0 (top left),

we observe that Earth orbits the Sun for a few cycles but eventually takes on a new

trajectory. In this case, we see that Earth is flying around the system, in no predictable

pattern. Earth leaves the system and the Star 2 orbit is becoming even more elongated.

When the mass of Star 2 is half the mass of the Sun, 500 times MJ0 (top right), the Earth

orbits the Sun roughly four times and then exits the system. The orbit of Star 2 is

elliptical. The bottom row images show when the mass of Star 2 is 905 and 1000 times

MJ0 (the mass of the Jupiter). In the image on the left, we see Earth orbits the Sun three

times and then escapes towards Star 2. Star 2 then captures Earth and Earth oscillates

around Star 2 until it leaves the system. In the image on the right, we see Earth leave the

system relatively quickly when Star 2 has the mass of the Sun. Also, we observe the

elliptical shape of the orbit of Star 2.

In our analysis, we have shown only a few figures to highlight the trajectories of

Earth’s orbit in the binary star system. We generated many other plots showing Earth’s

orbit, all being unpredictable, displaying no pattern. We felt that the selected figures

provide the best representations of Earth’s behavior. We refer the reader to Table 2 for

each case we simulated. In the table, dark gray represents the stability of Earth’s orbit,

when it does not escape from the system. The light gray represents situations in which the

orbit becomes unstable and Earth escapes the system. Table 2 shows that Earth becomes

unstable when the mass of Star 2 is between 165 to 170 times the mass of Jupiter.
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Fig. 12. The stability of Earth’s orbit. Star 2 is set at the perihelion position of Jupiter,
7.41× 1011m. The mass of Star 2 is changed beginning with 440×MJ0 (top right),
500×MJ0 (top left), 905×MJ0 (bottom left), and 1000×MJ0 (bottom right).
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5.3 Star 2 Equal to the Sun’s Mass, Perihelion Position Varied

We saw in the previous simulation that as the mass of Star 2 increases, Earth’s orbit

becomes unstable and eventually is ejected from the system. At the largest mass,

MJ0 = 1.90×1030 kg, the most dramatic effects were noticed, in particular, when Earth

orbits the Sun twice and then leaves the system. For our next set of simulations, we begin

with this set of parameters and let the mass of Star 2 be equal to the mass of the Sun. In

this simulation, we vary the perihelion position of Star 2. All of the images in this section

represent a binary star system containing the Earth. We discuss the results shown in

Figure 13 and Figure 14.

In Figure 13, the results show the orbit of Earth when Star 2 is located at 1 and 2

times the perihelion position of Jupiter. These position values are 7.41×1011m (4.95 AU)

and 1.48×1012 m (9.89 AU). In the left image, we observe that Earth escapes after a few

orbits around the Sun. The orbit of Star 2 also looks elliptical. When the perihelion

distance is doubled in the right image, Earth is ejected after many orbital periods.

Fig. 13. The stability of Earth’s orbit. Star 2 is set to mass of 1.90×1030 kg, or 1000×MJ0 .
The perihelion position is changed beginning at 1.0× J0 or 4.95 AU (left) and 2.0× J0 or
9.89 AU (right).
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In Figure 14, we increase the distance by 2.5,3,10, and 100 times the distance of

Jupiter, J0. When Star 2 is located at 2.5 times J0 (top left) or 1.85×1012 m (12.4 AU),

Earth orbits the Sun over many periods but then escapes out to the orbit of Star 2.

Fig. 14. The stability of Earth’s orbit. Star 2 is set to mass of 1.90×1030 kg, or 1000×MJ0 .
The perigee position is 2.5× J0 or 12.4 AU (top left), 3.0× J0 or 14.8 AU (top right),
10× J0 or 49.5 AU (bottom left), and 100× J0 or 247.4 AU (bottom right).

Earth oscillates around Star 2 for two cycles, and then leaves the system. When Star 2 is

positioned at 3.0 times J0 (top right) or 2.22×1012 m (14.8 AU), Earth displays erratic

behavior but never leaves the orbit around the Sun. There is still a circular nature to the

50



orbit. As we continue to place Star 2 further out at distances 10 times J0 or 7.41×1012 m

(49.5 AU) and at 50 times J0 or 3.71×1013 m (247.4 AU), we observe Earth remains in

orbit around the Sun and does not leave the system or reach the orbit of Star 2.

In Table 3, we display all of the location changes for Star 2. In this table, the light

grey represents the instability of Earth’s orbit or when erratic behavior can be seen and

the dark gray represents the stability of Earth’s orbit or when the Earth remains bound to

the Sun and does not reach the orbit of Star 2. We can see from the table that Earth’s orbit

is stable between the range of 2.8−2.9 times J0.

Table 3. Changing the location of Star 2 when the mass of Star 2 is 1.90×1030 kg. The
dark grey represents when the orbit of Earth is stable at the mass. The light gray represents
when the orbit of Earth is unstable, leading to ejection.

Location Change of Star 2

1x 1.5x 2.0x 2.1x 2.2x 2.3x 2.4x 2.5x

2.6x 2.7x 2.8x 2.9x 3.0x 3.1x 3.2x 3.3x

3.4x 3.5x 3.6x 3.7x 3.8x 3.9x 4.0x 5.0x

10x 20x 30x 40x 50x 60x 70x 80x

90x 100x 150x

5.4 Star 2 Mass and Perihelion Position Varied

In the previous sections, we fixed the location of Star 2 and varied the mass or we

fixed the mass and varied the location. In each of the simulations, we observed the

behavior of Earth. Now, we will investigate how varying both the mass and the location of

Star 2 impacts the behavior of Earth. In this section, for each set of positions of Star 2,

which are 1,2.5,5,10,25, and 50 times J0, the mass of Star 2 is varied by 1,100,500, and

1000 times MJ0 . We are only concerned with the orbit of Earth as shown in the following

figures 15 - 20 below. In Figure 15, Star 2 is located at 4.95 AU and the mass is varied.
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When Star 2 is equal to the mass of Jupiter, Earth’s exhibits no sign of erratic behavior

and remains in circular motion around the Sun. As the mass increases to 100 times MJ0

(top right), Earth’s orbit begins to show signs of expanding radially outward but remains

in a circular motion around the Sun. As the mass increases to 500 and 1000 times MJ0 ,

Earth’s orbit becomes erratic and ultimately, leaves the system. We have already seen

these results in Section 5.2.

Fig. 15. The stability of Earth’s orbit. Star 2 begins at the perihelion location of Jupiter,
7.41×1011 m or approximately 4.95 AU. The mass of Star 2 starts at the original mass of
Jupiter, 1×MJ0 (top left). We vary the mass by 100×MJ0 (top right), 500×MJ0 (bottom
left), and 1000×MJ0 (bottom right), where MJ0 = 1.90×1027 kg.

In Figure 16, the Star 2 is located 12.4 AU, outside of orbit of Saturn, and the mass is

varied. We can see that when the mass of Star 2 is equal to Jupiter (top left), Earth
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demonstrates circular motion around the Sun and does not leave the system. As the mass

increases to 100 (top right) and 500 times MJ0 (bottom left), Earth’s orbit begins to

expand radially outward. When Star 2 is 1000 times MJ0 , it is clear that Earth begins to

show erratic behavior. Earth orbits the Sun over many periods and eventually leaves the

system entirely.

Fig. 16. The stability of Earth’s orbit. Star 2 begins at a distance 2.5× further than the
perihelion position of Jupiter, ≈ 1.85× 1012 m or approximately 12.4 AU. The mass
of Star 2 begins at the oringal mass of Jupiter 1×MJ0 (top left). We vary the mass by
100×MJ0 (top right), 500×MJ0 (bottom left), and 1000×MJ0 (bottom right), where
MJ0 = 1.90×1027 kg.

In Figure 17, Star 2 is located 24.8 AU, between the orbits of Uranus and Nepture,

and the mass is varied. With Star 2 having the mass of Jupiter or 100 times MJ0 , we see
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that it does not have an apparent influence on Earth’s orbit. See the top left and right

images. Once again, as Star 2 reaches half the mass of the Sun 500 times MJ0 or equal to

the mass of the Sun, 1000 times MJ0 , we see the effects on Earth’s orbit. In the bottom

left and right images, we notice Earth is beginning to become unstable and the orbit

continues to expand outward. However, over the length of this simulation, Earth never

escapes the system.

Fig. 17. The stability of Earth’s orbit. Star 2 begins at a distance 5× further than the
perihelion position of Jupiter, ≈ 3.70×1012 m, or approximately 24.8 AU. The mass of
Star 2 begins at the original mass of Jupiter 1×MJ0 (top left), and then we vary the mass
by 100×MJ0 (top right), 500×MJ0 (bottom left), and 1000×MJ0 (bottom right), where
MJ0 = 1.90×1027 kg.
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In Figure 18, Star 2 is located 49.5 AU, past Pluto and somewhere in the Kuiper Belt,

and the mass is varied. In these images, we can see that Earth remains in a circular orbit

around the Sun over the entire simulation. When the Star 2 has a mass of 500 and 1000

times MJ0 , Earth’s orbit expands outward. At this distance, when the mass of the stars in

the system are equal to each other, Earth shows the beginning of erratic behavior.

Fig. 18. The stability of Earth’s orbit. Star 2 begins at a distance 10× further than the
perihelion position of Jupiter, ≈ 7.4×1012 m, or approximately 49.5 AU. The mass of
Star 2 begins at the original mass of Jupiter 1×MJ0(top left), and then we vary the mass
by 100×MJ0 (top right), 500×MJ0 (bottom left), and 1000×MJ0 (bottom right), where
MJ0 = 1.90×1027 kg.

In Figures 19 and 20 below, Star 2 is located 124 AU and 248 AU. These distances

are comparable to where the trans-Neptunian object, 2018 VG18 was discovered, and half
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way to where Planet Nine is supposed to exist (somewhere between 400−800 AU). We

can see in the figures that Earth’s orbit remains in circular motion around the Sun.

Fig. 19. The stability of Earth’s orbit. Star 2 begins at a distance 25× further than the
perihelion position of Jupiter, ≈ 1.85×1013 m, or approximately 124 AU. The mass of
Star 2 begins at the original mass of Jupiter,1×MJ0(top left), and then we vary the mass
by 100×MJ0 (top right), 500×MJ0 (bottom left), and 1000×MJ0 (bottom right), where
MJ0 = 1.90×1027 kg.
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Fig. 20. The stability of Earth’s orbit. Star 2 begins at a distance 50× further than the
perihelion position of Jupiter, ≈ 3.70×1013 m, or approximately 248 AU. The mass of
Star 2 begins at the original mass of Jupiter, 1×MJ0 (top left), and then we vary the mass
by 100×MJ0 (top right), 500×MJ0 (bottom left), and 1000×MJ0 (bottom right), where
MJ0 = 1.90×1027 kg.

However, we can see that Earth’s orbit is beginning to expand when Star 2 has the same

mass as the Sun. See the bottom left images of Figures 19 and 20.

Table 4 contains all of the simulations we ran. In this table, the dark gray boxes with a

S (stable) represents the stability of the orbit of Earth. This means the Earth remains in
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orbit around the Sun and does not escape the system. The light gray boxes with an U

(unstable) is used to present the instability of the orbit of Earth. In these cases, Earth no

longer orbits the Sun and escapes the system.

58



Ta
bl

e
4.

C
ha

ng
in

g
th

e
m

as
s

of
St

ar
2

lo
ca

te
d

at
di

ff
er

en
tp

os
iti

on
s.

T
he

da
rk

gr
ay

re
pr

es
en

ts
w

he
n

th
e

or
bi

to
f

E
ar

th
is

st
ab

le
at

th
e

m
as

s
va

lu
e

of
St

ar
2.

T
he

lig
ht

gr
ay

re
pr

es
en

ts
w

he
n

th
e

or
bi

to
f

E
ar

th
is

un
st

ab
le

,l
ea

di
ng

to
ej

ec
tio

n.

M
as

s
an

d
L

oc
at

io
n

C
ha

ng
e

of
St

ar
2

L
oc

at
io

n/
M

as
s:

1x
10

x
50

x
10

0x
25

0x
50

0x
10

00
x

1x
S

S
S

S
U

U
U

2.
5x

S
S

S
S

S
S

U

5x
S

S
S

S
S

S
S

10
x

S
S

S
S

S
S

S

25
x

S
S

S
S

S
S

S

50
x

S
S

S
S

S
S

S

59



6 DISCUSSION

6.1 Overview of the Results

The test case simulation for the Sun-Earth-Star 2 system showed that our program

was running properly. We observe that the orbits of Earth and Star 2 show no signs of

instability. From the gravitational effects, Earth is bound to the Sun and the interaction

between the Earth and Star 2 is not large enough to overcome the attraction from the Sun.

This system is the same as the Sun-Earth-Jupiter three-body system and so we expect the

orbits to be circular and that Earth remains in orbit around the Sun.

In the first simulation, we varied the mass of Star 2 while placing it in Jupiter’s orbit.

The mass was varied beginning with the mass of Jupiter and ending with the mass of the

Sun. By varying and increasing the mass of Star 2, we noticed that Earth’s orbit became

increasingly unstable. At lower masses, the orbit of Earth begins to expand radially

outward, experiencing the gravitational pull from Star 2. The orbit continues to increase

until the mass of Star 2 reaches the mass between 165 and 170 times MJ0 . Once Star 2

reaches this range of mass, Earth begins to exhibit erratic trajectories around the binary

pair, possibly gaining enough orbital energy to escape the system. These trajectories

exhibit no particular pattern. As the mass continues to increase, we can actually observe

that Star 2 could capture the Earth after leaving its initial orbit around the Sun. When this

happens, we can see that Earth orbits around the second star in our binary system. As the

mass of Star 2 approaches the mass of the Sun, in a short time Earth is ejected from the

system.

In the next simulation, Star 2 was set to the mass of the Sun and the position of Star 2

was varied. When Star 2 was placed at 4.95, 9.89, and 12.4 AU, we observed that Earth

orbits the Sun over a few periods and eventually escapes, even reaching the orbit of Star 2.

Then Earth oscillates around Star 2 and after a short time leaves the system. As the

distance of Star 2 is further increased to a distance of 14.8, 49.5, and 247.4 AU, we see
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that Earth can still experience the gravitational effects from Star 2, but does not exit the

system in this time interval. From these results, we can see that when Star 2 has the same

mass of the Sun, the closer Star 2 is, the greater the gravitational influence it has on Earth.

As Star 2 moves further away, these gravitational effects decrease and Earth remains in

orbit around the Sun. Specifically, it is in the range of 2.8−2.9 times J0 or 13.8−14 AU

of Star 2, where Earth transitions from an unstable orbit to a stable orbit. Earth is in a

stable orbit when Star 2, with a mass of 1.90×1030 kg, is located outside the orbit of

Saturn.

The last simulation we performed involved varying both the mass and locations of

Star 2. When Star 2 was placed at 4.95 AU, at Jupiter’s orbit, we saw that as the mass

increases, Earth’s orbit became unstable. Earth begins in an orbit around the Sun but then

expands radially outward and leaves the system after a few orbits around the Sun. As we

moved Star 2 out, away from the Sun, we saw the gravitational effects on the Earth

become less severe. For example, when Star 2 was at 12.4 AU, around the orbit of Saturn,

Earth did not leave until the mass of Star 2 was equal to the mass of the Sun. We did

observe erratic behavior but it was less pronounced. It was not until Star 2 was located at

24.8 AU that Earth remained in the system, revolving around the Sun. At this distance,

which is between the orbits of Uranus and Neptune, Earth remained in a stable orbit.

However, we did see a radial expansion of the orbit of Earth, but it never left the system.

As the position of Star 2 moved outward to distances 49.5,124, and 248 AU, we observed

that Earth remained in a stable configuration. At these distances, which is past the orbit of

Pluto and out into the Kuiper Belt, Earth felt the gravitational effects when the mass of

Star 2 was equal to the mass of the Sun.

6.2 Concluding Remarks

In this thesis, we analyzed the effects of Earth’s trajectory in a binary star system. We

used the three-body model to explore the behavior of Earth’s orbit when the mass of Star
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2 is varied, when the position of Star 2 is varied, and when both the mass and position of

Star 2 is varied. What we learned is that there are ranges of masses and distances of Star 2

that leads to Earth being unstable over long periods of time. This type of study may be

used to analyze other types of binary star systems, like the Alpha Centauri System, to

investigate where planets are likely to exist or where they are likely not to exist.
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Appendix A

C++ PROGRAMS

We present the program used in the simulations. The code provided contains

comments about each part of the program.

/ / Source F i l e : O r b i t a l C o d e . cpp

/ / T h i s program s i m u l a t e s t h e o r b i t a l p o s i t i o n s , v e l o c i t i e s , and

/ / a c c e l e r a t i o n s as w e l l as t h e o r b i t a l energy , a n g u l a r momentum

/ / f o r t h e pr imary body under t h e g r a v i t a t i o n a l i n f l u e n c e o f a

/ / c e n t r a l mass and / or a n o t h e r mass i n t h e two−body and Three −Body

/ / problem ( TBP and 3BP ) .

/ / I n c l u d e t h e l i b r a r i e s :

# i n c l u d e <i o s t r e a m>

# i n c l u d e <f s t r e a m>

# i n c l u d e <c s t d l i b >

# i n c l u d e <s t r i n g >

# i n c l u d e <cmath>

/ / namespace g i v e t h e f reedom t o use s h o r t , a c c u r a t e names .

us ing namespace s t d ;

/ / D e c l a r i n g t h e s i z e o f t h e a r r a y .

c o n s t i n t S i z e = 11 e6 ;

/ / D e f i n i n g t h e v a r i a b l e a r r a y s f o r S t a r 1 , Earth , and S t a r 2 .

/ / The a r r a y s w i l l s t o r e t h e t i m e and t h e x , y− d i r e c t i o n a l p o s i t i o n s

/ / and v e l o c i t i e s f o r S tar1 , Earth , and S t a r 2 .

double Time [ S i z e ] ;

double S t a r 1 x P o s i t i o n [ S i z e ] , S t a r 1 y P o s i t i o n [ S i z e ] ,

E a r t h x P o s i t i o n [ S i z e ] , E a r t h y P o s i t i o n [ S i z e ] ,

S t a r 2 x P o s i t i o n [ S i z e ] , S t a r 2 y P o s i t i o n [ S i z e ] ;

double S t a r 1 x V e l o c i t y [ S i z e ] , S t a r 1 y V e l o c i t y [ S i z e ] ,

E a r t h x V e l o c i t y [ S i z e ] , E a r t h y V e l o c i t y [ S i z e ] ,

S t a r 2 x V e l o c i t y [ S i z e ] , S t a r 2 y V e l o c i t y [ S i z e ] ;
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/ / The f o l l o w i n g l i n e s w i l l d e f i n e t h e f u n c t i o n s used t h r o u g h o u t

/ / t h e program .

/ / ================================================================

/ / D e f i n i n g t h e A c c e l e r a t i o n F u n c t i o n s f o r S t a r 1 , Earth , and S t a r 2

/ / x i ’ s and y i ’ s are t h e p o s i t i o n s o f t h e b o d i e s i n p u t t e d i n t o t h e

/ / f u n c t i o n s , where i = 1 , 2 , 3 .

double S t a r 1 x A c c e l e r a t i o n ( c o n s t double& x1 , c o n s t double& y1 ,

c o n s t double& x3 , c o n s t double& y3 ) ;

double S t a r 1 y A c c e l e r a t i o n ( c o n s t double& x1 , c o n s t double& y1 ,

c o n s t double& x3 , c o n s t double& y3 ) ;

double E a r t h x A c c e l e r a t i o n ( c o n s t double& x1 , c o n s t double& y1 ,

c o n s t double& x2 , c o n s t double& y2 ,

c o n s t double& x3 , c o n s t double& y3 ) ;

double E a r t h y A c c e l e r a t i o n ( c o n s t double& x1 , c o n s t double& y1 ,

c o n s t double& x2 , c o n s t double& y2 ,

c o n s t double& x3 , c o n s t double& y3 ) ;

double S t a r 2 x A c c e l e r a t i o n ( c o n s t double& x1 , c o n s t double& y1 ,

c o n s t double& x3 , c o n s t double& y3 ) ;

double S t a r 2 y A c c e l e r a t i o n ( c o n s t double& x1 , c o n s t double& y1 ,

c o n s t double& x3 , c o n s t double& y3 ) ;

/ / The e ne rg y (C) , a n g u l a r momentum ( h ) , semi −major a x i s ( a ) , and

/ / e c c e n t r i c i t y ( e ) f u n c t i o n s f o r t h e TBP . x and y r e p r e s e n t t h e

/ / p o s i t i o n , vx and vy r e p r e s e n t t h e v e l o c i t y o f t h e p l a n e t .

double e ne rg y ( c o n s t double & x , c o n s t double& y ,

c o n s t double& vx , c o n s t double& vy ) ;

double angularmomentum ( c o n s t double& x , c o n s t double& y ,

c o n s t double& vx , c o n s t double& vy ) ;

double s e m i m a j o r a x i s ( c o n s t double& C ) ;

double e c c e n t r i c i t y ( c o n s t double& A ) ;

/ / The n e x t s e t o f f u n c t i o n s are t h e n u m e r i c a l methods used i n t h i s
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/ / problem . These methods are t h e Euler −Cromer and t h e Runge−K u t t a 4 t h

/ / o r d e r method .

/ / Runge−K u t t a ( RK4 ) F u n c t i o n

void RK4( c o n s t i n t& N,

c o n s t double& I n i t i a l T i m e , c o n s t double& Fina lTime ,

c o n s t double& Star1X , c o n s t double& Star1Y ,

c o n s t double& Star1VX , c o n s t double& Star1VY ,

c o n s t double& EarthX , c o n s t double& EarthY ,

c o n s t double& EarthVX , c o n s t double& EarthVY ,

c o n s t double& Star2X , c o n s t double& Star2Y ,

c o n s t double& Star2VX , c o n s t double& Star2VY ) ;

/ / Runge−K u t t a S t e p F u n c t i o n

void RK4STEP ( double& t , c o n s t double& dt ,

double& x1 , double& y1 , double& vx1 , double& vy1 ,

double& x2 , double& y2 , double& vx2 , double& vy2 ,

double& x3 , double& y3 , double& vx3 , double& vy3 ) ;

/ / Euler −Cromer F u n c t i o n

/ / Uncomment t o use t h i s method

/ * v o i d EulerCromer ( do ub l e& t , c o n s t do ub l e& dt ,

do ub l e& x1 , do ub l e& y1 , d oub l e& vx1 , d oub l e& vy1 ,

do ub l e& x2 , do ub l e& y2 , d oub l e& vx2 , d oub l e& vy2 ,

do ub l e& x3 , do ub l e& y3 , d oub l e& vx3 , d oub l e& vy3 ) ; * /

/ / E x t r a f u n c t i o n s used t o c a l c u l a t e t h e v e l o c i t y o f t h e p l a n e t and

/ / t h e S t a r . Note t h a t each s i m u l a t i o n b e g i n s t h e s i m u l a t i o n w i t h

/ / each o f t h e b o d i e s i n a c i r c u l a r c o n f i g u r a t i o n .

double c i r c u l a r v e l o c i t y ( c o n s t double& x ) ;

double S t a r 1 V e l o c i t y ( c o n s t double& x1 , c o n s t double& y1 ,

c o n s t double& x3 , c o n s t double& y3 ) ;

∖∖Begin t h e Main Program

i n t main ( ) {
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/ / D e c l a r i n g t h e t i m e v a r i a b l e s :

double I n i t i a l T i m e , F ina lT ime ;

/ / number o f t i m e s t h e program w i l l i t e r a t e

i n t N;

/ / D e c l a r i n g S t a r 1 Parame ter s :

double Star1X , Star1Y , Star1VX , Star1VY ;

/ / D e c l a r i n g Ear th p a r a m e t e r s :

double EarthX , EarthY , EarthVX , EarthVY ;

/ / D e c l a r i n g S t a r 2 p a r a m e t e r s :

double Star2X , Star2Y , Star2VX , Star2VY ;

double Pi = 3 .141592653589793 ;

/ / Number o f i t e r a t i o n s −T h i s number w i l l be v a r i e d

/ / depend ing how long t h e program runs f o r .

N = 1 3 . 0 e5 ; / /

I n i t i a l T i m e = 0 . 0 ; / / b e g i n n i n g a t t i m e 0 .

/ / F ina lT ime = 6 . 0 * 3 6 5 . 0 ;

/ / S t a r 1 i n i t i a l c o n d i t i o n s

SunX = −7.062 e8 ;

SunY = 0 . 0 ;

SunVX = 0 . 0 ;

/ / SunVY = S u n V e l o c i t y ( SunX , SunY , J u p i t e r X , J u p i t e r Y ) ;

/ / Ear th ’ s i n i t i a l c o n d i t i o n s ( b e g i n n i n g t h e p e r g i e e p o s i t i o n )

EarthX = 1 . 4 7 e11 ;

Ear thY = 0 . 0 ;

EarthVX = 0 . 0 ;

EarthVY = ( 2 . 0 * P i * EarthX ) / ( 3 6 5 . 2 5 * 2 4 . 0 * 3 6 0 0 . 0 ) ;

/ / EarthVY = c i r c u l a r v e l o c i t y ( EarthX ) ;

68



/ / S t a r 2 i n i t i a l c o n d i t i o n s

/ / These i n i t i a l c o n d i t i o n s are s e t a t t h e p e r i g e e p o s i t i o n

/ / o f J u p i t e r w i t h t h e speed . S

Star2X = 7 . 4 0 e11 ;

Star2Y = 0 . 0 ;

Star2VX = 0 . 0 ;

Star2VY = c i r c u l a r v e l o c i t y ( J u p i t e r X ) ;

SunVY = S u n V e l o c i t y ( SunX , SunY , J u p i t e r X , J u p i t e r Y ) ;

/ / I f t h e number o f i t e r a t i o n s are l a r g e r than t h e

/ / a r r a y s i z e t h e n t h e program w i l l e x i t .

i f (N >= P ) { c e r r << ” E r r o r ! N >= P ∖n ” ; e x i t ( 1 ) ; }

/ / I n p u t a l l t h e p a r a m e t e r s i n t o t h e Runge−K u t t a A l g o r i t h m

RK(N, I n i t i a l T i m e , F ina lTime ,

Star1X , Star1Y , Star1VX , Star1VY ,

EarthX , EarthY , EarthVX , EarthVY ,

Star2X , Star2Y , Star2VX , Star2VY ) ;

/ / Enab le s w r i t i n g t o a . d a t f i l e

o f s t r e a m m y f i l e ( ” O r b i t a l D a t a . d a t ” ) ;

/ / S e t p r e c i s i o n t o 6 .

m y f i l e . p r e c i s i o n ( 6 ) ;

/ / Begin t h e add ing t h e e l e m e n t s t o t h e f i l e , i t e r a t e .

f o r ( i = 0 ; i < N; i ++){

m y f i l e << Time [ i ] << ” ”

<< S t a r 1 x P o s i t i o n [ i ] << ” ”

<< S t a r 1 y P o s i t i o n [ i ] << ” ”

<< S t a r 1 x V e l o c i t y [ i ] << ” ”

<< S t a r 1 y V e l o c i t y [ i ] << ” ”

<< E a r t h x P o s i t i o n [ i ] << ” ”

<< E a r t h y P o s i t i o n [ i ] << ” ”
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<< E a r t h x V e l o c i t y [ i ] << ” ”

<< E a r t h y V e l o c i t y [ i ] << ” ”

<< S t a r 2 x P o s i t i o n [ i ] << ” ”

<< S t a r 2 y P o s i t i o n [ i ] << ” ”

<< S t a r 2 x V e l o c i t y [ i ] << ” ”

<< S t a r 2 y V e l o c i t y [ i ] << ” ”

<< s q r t ( E a r t h x P o s i t i o n [ i ]* E a r t h x P o s i t i o n [ i ] +

E a r t h y P o s i t i o n [ i ]* E a r t h y P o s i t i o n [ i ] ) << ” ”

<< s q r t ( E a r t h x V e l o c i t y [ i ]* E a r t h x V e l o c i t y [ i ] +

E a r t h y V e l o c i t y [ i ]* E a r t h y V e l o c i t y [ i ] ) << ” ”

<< e ne rg y ( E a r t h x P o s i t i o n [ i ] , E a r t h y P o s i t i o n [ i ] ,

E a r t h x V e l o c i t y [ i ] , E a r t h y V e l o c i t y ) << ” ”

<< angularmomentum ( E a r t h x P o s i t i o n [ i ] , E a r t h y P o s i t i o n [ i ] ,

E a r t h x V e l o c i t y [ i ] , E a r t h y V e l o c i t y ) << ” ”

<< s e m i m a j o r a x i s ( e ne rg y ( E a r t h x P o s i t i o n [ i ] ,

E a r t h y P o s i t i o n [ i ] , E a r t h x V e l o c i t y [ i ] ,

E a r t h y V e l o c i t y ) ) << ” ”

<< e c c e n t r i c i t y ( s e m i m a j o r a x i s ( en e r g y ( E a r t h x P o s i t i o n [ i ] ,

E a r t h y P o s i t i o n [ i ] , E a r t h x V e l o c i t y [ i ] ,

E a r t h y V e l o c i t y ) ) ) << ” ”

<< s q r t ( S t a r 2 x P o s i t i o n [ i ]* S t a r 2 x P o s i t i o n [ i ] +

S t a r 2 y P o s i t i o n [ i ]* S t a r 2 y P o s i t i o n [ i ] ) << ” ”

<< s q r t ( S t a r 2 x V e l o c i t y [ i ]* S t a r 2 x V e l o c i t y [ i ] +

S t a r 2 y V e l o c i t y [ i ]* S t a r 2 y V e l o c i t y [ i ] ) << ” ”

<< e ne rg y ( S t a r 2 x P o s i t i o n [ i ] , S t a r 2 y P o s i t i o n [ i ] ,

S t a r 2 x V e l o c i t y [ i ] , S t a r 2 y V e l o c i t y ) << ” ”

<< angularmomentum ( S t a r 2 x P o s i t i o n [ i ] , S t a r 2 y P o s i t i o n [ i ] ,

S t a r 2 x V e l o c i t y [ i ] , S t a r 2 y V e l o c i t y ) << ” ”

<< s e m i m a j o r a x i s ( e ne rg y ( S t a r 2 x P o s i t i o n [ i ] ,

S t a r 2 y P o s i t i o n [ i ] , S t a r 2 x V e l o c i t y [ i ] ,

S t a r 2 y V e l o c i t y ) ) << ” ”

<< e c c e n t r i c i t y ( s e m i m a j o r a x i s ( en e r g y ( S t a r 2 x P o s i t i o n [ i ] ,

S t a r 2 y P o s i t i o n [ i ] , S t a r 2 x V e l o c i t y [ i ] ,

S t a r 2 y V e l o c i t y ) ) ) << ” ”

<<e n d l ;
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/ / D e l e t e t h e e l e m e n t s i n t h e a r r a y /

d e l e t e [ ] S t a r 1 x P o s i t i o n ;

d e l e t e [ ] S t a r 1 y P o s i t i o n ;

d e l e t e [ ] S t a r 1 x V e l o c i t y ;

d e l e t e [ ] S t a r 1 y V e l o c i t y ;

d e l e t e [ ] E a r t h x P o s i t i o n ;

d e l e t e [ ] E a r t h y P o s i t i o n ;

d e l e t e [ ] E a r t h x V e l o c i t y ;

d e l e t e [ ] E a r t h y V e l o c i t y ;

d e l e t e [ ] S t a r 2 x P o s i t i o n ;

d e l e t e [ ] S t a r 2 y P o s i t i o n ;

d e l e t e [ ] S t a r 2 x V e l o c i t y ;

d e l e t e [ ] S t a r 2 y V e l o c i t y ;

}

m y f i l e . c l o s e ( ) ;

} / / end w r i t i n g and s t o r i n g t o t h e f i l e .

/ / Runge K u t t a 4 t h o r d e r F u n c t i o n

void RK ( c o n s t i n t& N,

c o n s t double& I n i t i a l T i m e , c o n s t double& Fina lTime ,

c o n s t double& Star1X , c o n s t double& Star1Y ,

c o n s t double& Star1VX , c o n s t double& Star1VY ,

c o n s t double& EarthX , c o n s t double& EarthY ,

c o n s t double& EarthVX , c o n s t double& EarthVY ,

c o n s t double& Star2X , c o n s t double& Star2Y ,

c o n s t double& Star2VX , c o n s t double& Star2VY ){

/ / D e f i n e t h e t i m e s t e p v a r i a b l e s

double dt , TS ;

/ / Number o f i t e r a t i o n s :

i n t i ;

/ / S t e p p e r v a r i a b l e s f o r S t a r 1 ’ s p o s i t i o n s and v e l o c i t i e s

double X1S , Y1S , VX1S , VY1S ;
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/ / S t e p p e r v a r i a b l e s f o r Ear th ’ s p o s i t i o n s and v e l o c i t i e s

double X2S , Y2S , VX2S , VY2S ;

/ / S t e p p e r v a r i a b l e s f o r S t a r 2 ’ s p o s i t i o n s and v e l o c i t i e s

double X3S , Y3S , VX3S , VY3S ;

/ / Time S t e p ( Using 1 Ear th Day )

/ / d t = ( ( F ina lT ime − I n i t i a l T i m e ) / ( N− 1 ) ) * 21600 .0

d t = 8 . 6 4 e4 ;

Time [ 0 ] = I n i t i a l T i m e ;

/ / S t o r i n g t h e i n i t i a l p o s i t i o n s and v e l o c i t i e s o f each o f t h e

/ / b o d i e s i n t h e 0 t h e l e m e n t s p o t .

S t a r 1 x P o s i t i o n [ 0 ] = Star1X ;

S t a r 1 y P o s i t i o n [ 0 ] = Star1Y ;

S t a r 1 x V e l o c i t y [ 0 ] = Star1VX ;

S t a r 1 y V e l o c i t y [ 0 ] = Star1VY ;

E a r t h x P o s i t i o n [ 0 ] = EarthX ;

E a r t h y P o s i t i o n [ 0 ] = EarthY ;

E a r t h x V e l o c i t y [ 0 ] = EarthVX ;

E a r t h y V e l o c i t y [ 0 ] = EarthVY ;

S t a r 2 x P o s i t i o n [ 0 ] = Star2X ;

S t a r 2 y P o s i t i o n [ 0 ] = Star2Y ;

S t a r 2 x V e l o c i t y [ 0 ] = Star2VX ;

S t a r 2 y V e l o c i t y [ 0 ] = Star2VY ;

TS = I n i t i a l T i m e ;

X1S = Star1X ;

Y1S = Star1Y ;

VX1S = Star1VX ;

VY1S = Star1VY ;

X2S = EarthX ;

Y2S = EarthY ;

72



VX2S = EarthVX ;

VY2S = EarthVY ;

X3S = Star2X ;

Y3S = Star2Y ;

VX3S = Star2VX ;

VY3S = Star2VY ;

/ / Begin f o r loop f o r i t e r a t i n g t h e p o s i t i o n s and v e l o c i t i e s o f

/ / each body i n t h e s i m u l a t i o n

f o r ( i = 1 ; i < N; i ++){

/ / Pass t h e p a r a m e t e r s t o t h e n u m e r i c a l method

RK( TS , dt , X1S , Y1S , VX1S , VY1S ,

X2S , Y2S , VX2S , VY2S ,

X3S , Y3S , VX3S , VY3S ) ;

/ / Uncomment t o use t h i s method

/ * EulerCromer ( TS , dt , X1S , Y1S , VX1S , VY1S ,

X2S , Y2S , VX2S , VY2S ,

X3S , Y3S , VX3S , VY3S ) ; * /

Time [ i ] = TS ;

S t a r 1 x P o s i t i o n [ i ] = X1S ;

S t a r 1 y P o s i t i o n [ i ] = Y1S ;

S t a r 1 x V e l o c i t y [ i ] = VX1S ;

S t a r 1 y V e l o c i t y [ i ] = VY1S ;

E a r t h x P o s i t i o n [ i ] = X2S ;

E a r t h y P o s i t i o n [ i ] = Y2S ;

E a r t h x V e l o c i t y [ i ] = VX2S ;

E a r t h y V e l o c i t y [ i ] = VY2S ;

S t a r 2 x P o s i t i o n [ i ] = X3S ;

S t a r 2 y P o s i t i o n [ i ] = Y3S ;

S t a r 2 x V e l o c i t y [ i ] = VX3S ;

S t a r 2 y V e l o c i t y [ i ] = VY3S ;
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} / / End f o r loop

} / / End RK F u n c t i o n

/ / Begin Euler −Cromer F u n c t i o n

/ / Uncomment t o use t h i s method

/ * v o i d EulerCromer ( do ub l e& t , c o n s t do ub l e& dt ,

do ub l e& x1 , do ub l e& y1 , d oub l e& vx1 , d oub l e& vy1 ,

do ub l e& x2 , do ub l e& y2 , d oub l e& vx2 , d oub l e& vy2 ,

do ub l e& x3 , do ub l e& y3 , d oub l e& vx3 , d oub l e& vy3 ){

do ub l e AccelXSun , AccelYSun , Acce lXEar th , Acce lYEar th ,

A c c e l X J u p i t e r , A c c e l Y J u p i t e r ;

AccelXSun = S u n x A c c e l e r a t i o n ( x1 , y1 , x3 , y3 ) ;

Acce lYSun = S u n y A c c e l e r a t i o n ( x1 , y1 , x3 , y3 ) ;

Acce lXEar th = E a r t h x A c c e l e r a t i o n ( x1 , y1 , x2 , y2 , x3 , y3 ) ;

A c c e l Y E a r t h = E a r t h y A c c e l e r a t i o n ( x1 , y1 , x2 , y2 , x3 , y3 ) ;

A c c e l X J u p i t e r = J u p i t e r x A c c e l e r a t i o n ( x1 , y1 , x3 , y3 ) ;

A c c e l Y J u p i t e r = J u p i t e r y A c c e l e r a t i o n ( x1 , y1 , x3 , y3 ) ;

vx1 = vx1 + d t * AccelXSun ;

vy1 = vy1 + d t * Acce lYSun ;

vx2 = vx2 + d t * Acce lXEar th ;

vy2 = vy2 + d t * A c c e l Y E a r t h ;

vx3 = vx3 + d t * A c c e l X J u p i t e r ;

vy3 = vy3 + d t * A c c e l Y J u p i t e r ;

x1 = x1 + d t * vx1 ;

y1 = y1 + d t * vy1 ;

x2 = x2 + d t * vx2 ;

y2 = y2 + d t * vy2 ;

x3 = x3 + d t * vx3 ;

y3 = y3 + d t * vy3 ;

t = t + d t ;

} / / End Euler −Comer Method * /
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/ / Begin RK 4 t h o r d e r method

void RKSTEP ( double& t , c o n s t double& dt ,

double& x1 , double& y1 , double& vx1 , double& vy1 ,

double& x2 , double& y2 , double& vx2 , double& vy2 ,

double& x3 , double& y3 , double& vx3 , double& vy3 ){

/ / For S tar1 , t h e S# vx or S# vy r e p r e s e n t s t h e c o e f f i c i e n t s

/ / f o r t h e a c c e l e r a t i o n and k # x or k # y r e p r e s e n t s t h e c o e f f i c i e n t s

/ / f o r t h e v e l o c i t i e s .

double S1x , S1y , S2x , S2y , S3x , S3y , S4x , S4y ;

double S1vx , S1vy , S2vx , S2vy , S3vx , S3vy , S4vx , S4vy ;

/ / For Earth , t h e E# vx or E# vy r e p r e s e n t s t h e c o e f f i c i e n t s

/ / f o r t h e a c c e l e r a t i o n and k # x or k # y r e p r e s e n t s t h e

/ / c o e f f i c i e n t s f o r t h e v e l o c i t i e s .

double E1x , E1y , E2x , E2y , E3x , E3y , E4x , E4y ;

double E1vx , E1vy , E2vx , E2vy , E3vx , E3vy , E4vx , E4vy ;

/ / For S tar1 , t h e k # vx or k # vy r e p r e s e n t s t h e c o e f f i c i e n t s

/ / f o r t h e a c c e l e r a t i o n and k # x or k # y r e p r e s e n t s t h e c o e f f i c i e n t s

/ / f o r t h e v e l o c i t i e s .

double J1x , J1y , J2x , J2y , J3x , J3y , J4x , J4y ;

double J1vx , J1vy , J2vx , J2vy , J3vx , J3vy , J4vx , J4vy ;

double h , h2 , h6 ;

h = d t ;

h2 = 0 . 5 * h ;

h6 = ( 1 . 0 / 6 . 0 ) * h ;

/ / These are t h e i n i t i a l v e l o c i t i e s t h a t were i n p u t t e d from t h e u s e r .

/ / Note t h e s e are t h e i n i t i a l v e l o c i t i e s o f Ear th and J u p i t e r .

S1x = vx1 ;

S1y = vy1 ;
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E1x = vx2 ;

E1y = vy2 ;

J1x = vx3 ;

J1y = vy3 ;

/ / 1 s t a c c e l e r a t i o n s f o r S t a r 1

S1vx = S t a r 1 x A c c e l e r a t i o n ( x1 , y1 , x2 , y2 , x3 , y3 ) ;

S1vy = S t a r 1 y A c c e l e r a t i o n ( x1 , y1 , x2 , y2 , x3 , y3 ) ;

/ / 1 s t a c c e l e r a t i o n s f o r Ear th

E1vx = E a r t h x A c c e l e r a t i o n ( x1 , y1 , x2 , y2 , x3 , y3 ) ;

E1vy = E a r t h y A c c e l e r a t i o n ( x1 , y1 , x2 , y2 , x3 , y3 ) ;

/ / 1 s t a c c e l e r a t i o n s f o r S t a r 2

J1vx = S t a r 2 x A c c e l e r a t i o n ( x1 , y1 , x2 , y2 , x3 , y3 ) ;

J1vy = S t a r 2 y A c c e l e r a t i o n ( x1 , y1 , x2 , y2 , x3 , y3 ) ;

/ / 2nd v e l o c i t y f o r S t a r 1

S2x = vx1 + h2 * S1vx ;

S2y = vy1 + h2 * S1vy ;

/ / 2nd v e l o c i t y f o r Ear th

E2x = vx2 + h2 * E1vx ;

E2y = vy2 + h2 * E1vy ;

/ / 2nd v e l o c i t y f o r S t a r 2

J2x = vx3 + h2 * J1vx ;

J2y = vy3 + h2 * J1vy ;

/ / 2nd A c c e l e r a t i o n s f o r S t a r 1

S2vx = S t a r 1 x A c c e l e r a t i o n ( t + h2 , x1 + h2 * S1x , y1 + h2 * S1y ,

x2 + h2 * E1x , y2 + h2 * E1y ,

x3 + h2 * J1x , y3 + h2 * J1y ) ;

S2vy = S t a r 1 y A c c e l e r a t i o n ( t + h2 , x1 + h2 * S1x , y1 + h2 * S1y ,

x2 + h2 * E1x , y2 + h2 * E1y ,
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x3 + h2 * J1x , y3 + h2 * J1y ) ;

/ / 2nd A c c e l e r a t i o n s f o r Ear th

E2vx = E a r t h x A c c e l e r a t i o n ( t + h2 , x1 + h2 * S1x , y1 + h2 * S1y ,

x2 + h2 * E1x , y2 + h2 * E1y ,

x3 + h2 * J1x , y3 + h2 * J1y ) ;

E2vy = E a r t h y A c c e l e r a t i o n ( t + h2 , x1 + h2 * S1x , y1 + h2 * S1y ,

x2 + h2 * E1x , y2 + h2 * E1y ,

x3 + h2 * J1x , y3 + h2 * J1y ) ;

/ / 2nd A c c e l e r a t i o n s f o r S t a r 2

J2vx = S t a r 2 x A c c e l e r a t i o n ( t + h2 , x1 + h2 * S1x , y1 + h2 * S1y ,

x2 + h2 * E1x , y2 + h2 * E1y ,

x3 + h2 * J1x , y3 + h2 * J1y ) ;

J2vy = S t a r 2 y A c c e l e r a t i o n ( t + h2 , x1 + h2 * S1x , y1 + h2 * S1y ,

x2 + h2 * E1x , y2 + h2 * E1y ,

x3 + h2 * J1x , y3 + h2 * J1y ) ;

/ / 3 rd v e l o c i t y f o r S t a r 1

S3x = vx1 + h2 * S2vx ;

S3y = vy1 + h2 * S2vy ;

/ / 3 rd v e l o c i t y f o r Ear th

E3x = vx2 + h2 * E2vx ;

E3y = vy2 + h2 * E2vy ;

/ / 3 rd v e l o c i t y f o r S t a r 2

J3x = vx3 + h2 * J2vx ;

J3y = vy3 + h2 * J2vy ;

/ / 3 rd a c c e l e r a t i o n f o r S t a r 1

S3vx = S t a r 1 x A c c e l e r a t i o n ( t + h2 , x1 + h2 * S2x , y1 + h2 * S2y ,

x2 + h2 * E2x , y2 + h2 * E2y ,

x3 + h2 * J2x , y3 + h2 * J2y ) ;

S3vy = S t a r 1 y A c c e l e r a t i o n ( t + h2 , x1 + h2 * S2x , y1 + h2 * S2y ,

x2 + h2 * E2x , y2 + h2 * E2y ,
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x3 + h2 * J2x , y3 + h2 * J2y ) ;

/ / 3 rd a c c e l e r a t i o n f o r Ear th

E3vx = E a r t h x A c c e l e r a t i o n ( t + h2 , x1 + h2 * S2x , y1 + h2 * S2y ,

x2 + h2 * E2x , y2 + h2 * E2y ,

x3 + h2 * J2x , y3 + h2 * J2y ) ;

E3vy = E a r t h y A c c e l e r a t i o n ( t + h2 , x1 + h2 * S2x , y1 + h2 * S2y ,

x2 + h2 * E2x , y2 + h2 * E2y ,

x3 + h2 * J2x , y3 + h2 * J2y ) ;

/ / 3 rd a c c e l e r a t i o n f o r S t a r 2

J3vx = S t a r 2 x A c c e l e r a t i o n ( t + h2 , x1 + h2 * S2x , y1 + h2 * S2y ,

x2 + h2 * E2x , y2 + h2 * E2y ,

x3 + h2 * J2x , y3 + h2 * J2y ) ;

J3vy = S t a r 2 y A c c e l e r a t i o n ( t + h2 , x1 + h2 * S2x , y1 + h2 * S2y ,

x2 + h2 * E2x , y2 + h2 * E2y ,

x3 + h2 * J2x , y3 + h2 * J2y ) ;

/ / 4 t h v e l o c i t i e s f o r S t a r 1

S4x = vx1 + h * S3vx ;

S4y = vy1 + h * S3vy ;

/ / 4 t h v e l o c i t i e s f o r Ear th

E4x = vx2 + h * E3vx ;

E4y = vy2 + h * E3vy ;

/ / 4 t h v e l o c i t i e s f o r S t a r 2

J4x = vx3 + h * J3vx ;

J4y = vy3 + h * J3vy ;

/ / 4 t h a c c e l e r a t i o n term f o r S t a r 1

S4vx = S t a r 1 x A c c e l e r a t i o n ( t + h2 , x1 + h2 * S3x , y1 + h2 * S3y ,

x2 + h2 * E3x , y2 + h2 * E3y ,

x3 + h2 * J3x , y3 + h2 * J3y ) ;

S4vy = S t a r 1 y A c c e l e r a t i o n ( t + h2 , x1 + h2 * S3x , y1 + h2 * S3y ,

x2 + h2 * E3x , y2 + h2 * E3y ,
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x3 + h2 * J3x , y3 + h2 * J3y ) ;

/ / 4 t h a c c e l e r a t i o n term f o r Ear th

E4vx = E a r t h x A c c e l e r a t i o n ( t + h2 , x1 + h2 * S3x , y1 + h2 * S3y ,

x2 + h2 * E3x , y2 + h2 * E3y ,

x3 + h2 * J3x , y3 + h2 * J3y ) ;

E4vy = E a r t h y A c c e l e r a t i o n ( t + h2 , x1 + h2 * S3x , y1 + h2 * S3y ,

x2 + h2 * E3x , y2 + h2 * E3y ,

x3 + h2 * J3x , y3 + h2 * J3y ) ;

/ / 4 t h a c c e l e r a t i o n term f o r S t a r 2

J4vx = S t a r 2 x A c c e l e r a t i o n ( t + h2 , x1 + h2 * S3x , y1 + h2 * S3y ,

x2 + h2 * E3x , y2 + h2 * E3y ,

x3 + h2 * J3x , y3 + h2 * J3y ) ;

J4vy = S t a r 2 y A c c e l e r a t i o n ( t + h2 , x1 + h2 * S3x , y1 + h2 * S3y ,

x2 + h2 * E3x , y2 + h2 * E3y ,

x3 + h2 * J3x , y3 + h2 * J3y ) ;

/ / The new p o s i t i o n s and v e l o c i t i e s are d e p e n d e n t o f t h e t i m e s t e p ,

/ / c u r r e n t p o s i t i o n , and v e l o c i t y as w e l l as t h e

/ / E#x , E#y , E# vx , E# vy ,M#x , M#y , M# vx , M# vy , J #x , J #y , J # vx , & J # vy

/ / p a r a m e t e r s .

t = t + h ;

/ / new S t a r 1 x and y p o s i t i o n s

x1 = x1 + h6 * ( S1x + 2 . 0 * ( S2x + S3x ) + S4x ) ;

y1 = y1 + h6 * ( S1y + 2 . 0 * ( S2y + S3y ) + S4y ) ;

/ / new S t a r 1 x and y v e l o c i t i e s

vx1 = vx1 + h6 * ( S1vx + 2 . 0 * ( S2vx + S3vx ) + S4vx ) ;

vy1 = vy1 + h6 * ( S1vy + 2 . 0 * ( S2vy + S3vy ) + S4vy ) ;

/ / new Ear th x and y p o s i t i o n s

x2 = x2 + h6 * ( E1x + 2 . 0 * ( E2x + E3x ) + E4x ) ;

y2 = y2 + h6 * ( E1y + 2 . 0 * ( E2y + E3y ) + E4y ) ;
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/ / new Ear th x and y v e l o c i t i e s

vx2 = vx2 + h6 * ( E1vx + 2 . 0 * ( E2vx + E3vx ) + E4vx ) ;

vy2 = vy2 + h6 * ( E1vy + 2 . 0 * ( E2vy + E3vy ) + E4vy ) ;

/ / new S t a r 2 x and y p o s i t i o n s

x3 = x3 + h6 * ( J1x + 2 . 0 * ( J2x + J3x ) + J4x ) ;

y3 = y3 + h6 * ( J1y + 2 . 0 * ( J2y + J3y ) + J4y ) ;

/ / new S t a r 2 x and y v e l o c i t i e s

vx3 = vx3 + h6 * ( J1vx + 2 . 0 * ( J2vx + J3vx ) + J4vx ) ;

vy3 = vy3 + h6 * ( J1vy + 2 . 0 * ( J2vy + J3vy ) + J4vy ) ;

} / / End RK A l g o r i t h m

/ / Begin A c c e l e r a t i o n F u n c t i o n s f o r S t a r s and Ear th

/ / x1 and y1 are t h e p o s i t i o n s o f S tar1 ,

/ / x2 and y2 are t h e p o s i t i o n s o f Earth ,

/ / x3 and y3 are t h e p o s i t i o n s o f S t a r 2 .

/ / R e t u r n i n g t h e x a c c e l e r a t i o n o f t h e S t a r 1 :

double S t a r 1 x A c c e l e r a t i o n ( c o n s t double& x1 , c o n s t double& y1 ,

c o n s t double& x3 , c o n s t double& y3 ){

double G = 6 . 6 7 e −11;

double Sta r1Mass = 1 . 9 9 e30 ;

double Sta r2Mass = 1 . 9 0 e27 ;

/ / normSJ i s t h e norm d i s t a n c e be tween S t a r 1 and 2 .

double normSJ = s q r t ( ( x1 − x3 ) * ( x1 − x3 ) + ( y1 − y3 ) * ( y1 − y3 ) ) ;

double RxStar1 = − G * x1 * ( S ta r1Mass + Sta r2Mass ) /

( normSJ * normSJ * normSJ ) ;

re turn RxStar1 ;

}

/ / R e t u r n i n g t h e y a c c e l e r a t i o n o f t h e S t a r 1 :
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double S t a r 1 y A c c e l e r a t i o n ( c o n s t double& x1 , c o n s t double& y1 ,

c o n s t double& x3 , c o n s t double& y3 ){

double G = 6 . 6 7 e −11;

double Sta r1Mass = 1 . 9 9 e30 ;

double Sta r2Mass = 1 . 9 0 e27 ;

double normSJ = s q r t ( ( x1 − x3 ) * ( x1 − x3 ) + ( y1 − y3 ) * ( y1 − y3 ) ) ;

double RyStar1 = − G * y1 * ( SunMass + J u p i t e r M a s s ) /

( normSJ * normSJ * normSJ ) ;

re turn RyStar1 ;

}

/ / R e t u r n i n g t h e x a c c e l e r a t i o n o f t h e Ear th

double E a r t h x A c c e l e r a t i o n ( c o n s t double& x1 , c o n s t double& y1 ,

c o n s t double& x2 , c o n s t double& y2 ,

c o n s t double& x3 , c o n s t double& y3 ){

double G = 6 . 6 7 e −11;

double Sta r1Mass = 1 . 9 9 e30 ;

double Sta r2Mass = 1 . 9 0 e27 ;

/ / normES and NormEJ are t h e d i s t a n c e s norms be tween t h e

/ / Ear th and S t a r 1 and be tween Ear th and S t a r 2 .

double normES = s q r t ( ( x1 − x2 ) * ( x1 − x2 ) + ( y1 − y2 ) * ( y1 − y2 ) ) ;

double normEJ = s q r t ( ( x3 − x2 ) * ( x3 − x2 ) + ( y3 − y2 ) * ( y3 − y2 ) ) ;

double RxEar th = (G * SunMass * ( x1 − x2 ) /

( normES * normES * normES ) ) +

(G * J u p i t e r M a s s * ( x3 − x2 ) /

( normEJ * normEJ * normEJ ) ) ;

re turn RxEar th ;

}

/ / R e t u r n i n g t h e y a c c e l e r a t i o n o f t h e Ear th .
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double E a r t h y A c c e l e r a t i o n ( c o n s t double& x1 , c o n s t double& y1 ,

c o n s t double& x2 , c o n s t double& y2 ,

c o n s t double& x3 , c o n s t double& y3 ){

double G = 6 . 6 7 e −11;

double Sta r1Mass = 1 . 9 9 e30 ;

double Sta r2Mass = 1 . 9 0 e27 ;

double normES = s q r t ( ( x1 − x2 ) * ( x1 − x2 ) + ( y1 − y2 )* ( y1 − y2 ) ) ;

double normEJ = s q r t ( ( x3 − x2 ) * ( x3 − x2 ) + ( y3 − y2 )* ( y3 − y2 ) ) ;

double RyEar th = (G * SunMass * ( y1 − y2 ) /

( normES * normES * normES ) ) +

(G * J u p i t e r M a s s * ( y3 − y2 ) /

( normEJ * normEJ * normEJ ) ) ;

re turn RyEar th ;

}

/ / R e t u r n i n g t h e x a c c e l e r a t i o n o f S t a r 2 .

double S t a r 2 x A c c e l e r a t i o n ( c o n s t double& x1 , c o n s t double& y1 ,

c o n s t double& x3 , c o n s t double& y3 ){

double G = 6 . 6 7 e −11;

double Sta r1Mass = 1 . 9 9 e30 ;

double Sta r2Mass = 1 . 9 0 e27 ;

/ / normJS i s t h e d i s t a n c e norm be tween t h e s t a r s

double normJS = s q r t ( ( x1 − x3 ) * ( x1 − x3 ) + ( y1 − y3 ) * ( y1 − y3 ) ) ;

double RxStar2 = − G * x3 * ( SunMass + J u p i t e r M a s s ) /

( normJS * normJS * normJS ) ;

re turn RxStar2 ;

}

/ / R e t u r n i n g t h e y a c c e l e r a t i o n o f J u p i t e r .
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double S t a r 2 y A c c e l e r a t i o n ( c o n s t double& x1 , c o n s t double& y1 ,

c o n s t double& x3 , c o n s t double& y3 ){

double G = 6 . 6 7 e −11;

double Sta r1Mass = 1 . 9 9 e30 ;

double Sta r2Mass = 1 . 9 0 e27 ;

double normJS = s q r t ( ( x1 − x3 ) * ( x1 − x3 ) + ( y1 − y3 ) * ( y1 − y3 ) ) ;

double RyStar2 = − G * y3 * ( SunMass + J u p i t e r M a s s ) /

( normJS * normJS * normJS ) ;

re turn RyStar2 ;

} ∖∖ End a c c e l e r a t i o n F u n c t i o n s

∖∖ Begin I n t e g r a l s o f TBP

double e ne rg y ( c o n s t double& x , c o n s t double& y ,

c o n s t double& vx , c o n s t double& vy ){

double G = 6.67408 e −11;

double Sta r1Mass = 1 .989 e30 ;

double P l a n e t M a s s = 5 . 9 7 e24 ;

double mu = G * ( SunMass + P l a n e t M a s s ) ;

double r = s q r t ( x1 * x1 + x2 * x2 ) ;

re turn ( 0 . 5 * ( v1 * v1 + v2 * v2 ) − (mu / r ) ) ;

}

double angularmomentum ( c o n s t double& x , c o n s t double& y ,

c o n s t double& v1 , c o n s t double & v2 ){

re turn ( x1 * v2 − x2 * v1 ) ;

}

double e c c e n t r i c i t y ( c o n s t double & A ){

83



/ / For c i r c u l a r o r b i t s , t h e semi − l a t u s i s e q u a l t o t h e

/ / semi −major a x i s ( p = a ) . So p = h ˆ2 / a which means p = a

double G = 6.67408 e −11;

double SunMass = 1 .989 e30 ;

double P l a n e t M a s s = 5 . 9 7 e24 ;

double mu = G * ( SunMass + P l a n e t M a s s ) ;

double h = s q r t (A * mu ) ;

double x = mu * A;

double ecc = s q r t (1 − h * h / (mu * A ) ) ;

re turn ecc ;

}

/ / Begin E x t r a F u n c t i o n s Used

double semimajor ( c o n s t double & C){

double G = 6.67408 e −11;

double Sta r1Mass = 1 .989 e30 ;

double P l a n e t M a s s = 5 . 9 7 e24 ;

double mu = G * ( S ta r1Mass + P l a n e t M a s s ) ;

re turn − mu / ( 2 . 0 * C ) ;

}

double c i r c u l a r v e l o c i t y ( c o n s t double & x ){

double G = 6 . 6 7 e −11;

double Sta r1Mass = 1 . 9 9 e30 ;

i f ( x == 0){ re turn 0 ;}

e l s e { re turn s q r t (G * Sta r1Mass / x ) ; }

}

double S u n V e l o c i t y ( c o n s t double& x1 , c o n s t double& y1 ,

c o n s t double& x3 , c o n s t double& y3 ){
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double G = 6 . 6 7 e −11;

double Sta r2Mass = 1 . 9 0 e27 ;

double normSJ = s q r t ( ( x1 − x3 ) * ( x1 − x3 ) +

( y1 − y3 ) * ( y1 − y3 ) ) ;

re turn s q r t (G * Sta r2Mass * ( − x1 ) / ( normSJ * normSJ ) ) ;

}

/ / End F u n c t i o n s

/ / End Program
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