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ABSTRACT

BLUE RED HACKENBUSH SPIDERS

by Ravi Cho

One of the goals of Combinatorial Game Theory is to find provable winning strategies

for certain games. In this paper, we give winning strategies for certain spider positions

played using the rules of Blue Red Hackenbush and a variant. Blue Red Hackenbush and

its variants are played on a graph of a bLue and Red edges that are connected to a vertex

called the ground. We will represent the ground as a horizontal black line. In this paper,

we study spider graphs played under two different variants: Blue Red Hackenbush and

Reverse Blue Red Hackenbush. Both variants are played by two players: Left and Right.

On Left’s turn, they must choose a blue edge to delete. Any edges no longer connected to

the ground are also deleted. Right’s turn is similar, except they must choose a red edge to

delete. The first player unable to move loses. Every Blue Red Hackenbush position can be

identified as a dyadic rational. This value completely determines who wins the game

playing first and who wins the game playing second. It’s been shown that determining this

value is NP-hard for certain kinds of BR Hackenbush games, making the study of even

certain classes of positions interesting. Reverse BR Hackenbush is played exactly the

same as the usual BR Hackenbush, except after a player deletes an edge (and any

subsequently unconnected to the ground edges) they reverse the color of any edges that

were in the component they played in.

In this paper, we begin by introducing the essentials necessary to analyze spiders. In

section 2, we analyze spiders in BR Hackenbush. In particular, we give a solution for a

certain class of spiders called balanced spiders. In section 3, we turn our attention to

Reverse BR Hackenbush. In particular, we give a solution for two legged spiders. Even

though Reverse BR Hackenbush seems like it has similar rules to BR Hackenbush, the

results of section 2 and section 3 appear remarkably different.
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1 QUICK START GUIDE TO BLUE RED HACKENBUSH

Our goal for this section is to introduce the reader to Combinatorial Game Theory

with an emphasis on analyzing positions in Blue Red Hackenbush. In this section and the

next, the reader should assume all game play is using the rules of the usual BR

Hackenbush (and not Reverse BR Hackenbush). We will use the words game and position

interchangeably. Almost all the material in this section can be found in [1] and [2].

1.1 Blue Red Hackenbush

The game of Blue Red Hackenbush (BR Hackenbush) is a game played on a graph of

bLue and Red edges. There is a unique vertex that we label the body. It is convenient to

draw the body vertex as a horizontal black line. The game is played by two players, Left

and Right. On a player’s turn, they must delete an edge of their color. Left can delete blue

edges, and Right can delete red edges. After deleting an edge, any other edges no longer

connected to the ground via a path are also deleted. The first player unable to move, loses.

An example of such a game is in Figure 1.1.

Fig. 1.1: Example of a Game of Blue Red Hackenbush

In Figure 1.1 and in the remainder of the paper, we will represent blue edges with black

edges and red edges with grey edges. In some proofs, we may use black lines to represent

1



blue edges and/or arbitrarily colored paths. In these instances, we will state clearly what

the black lines represent. Returning to the above example, we can do a brute force

analysis using pencil and paper to determine Right is the winner of this game. In

particular, Right can win this game whether they go first or second.

Another example is given in Figure 1.2.

Fig. 1.2: Example of a Tweedle Dee Tweedle Dum Game

The game in Figure 1.2 is special because it has a natural strategy for the second player.

The second player can mimic the first player’s moves. In this way, the second player will

never run out of moves before the first player. The strategy of one player mimicking the

other player’s moves is called the Tweedle Dee Tweedle Dum strategy (TDTD). The

above game is a win for the second player to move.

1.2 Basic Definitions

Let G be a game. We write G = {G L|G R} where

G L = { the set of sub positions of G when Left moves on G } and

G R = { the set of sub positions of G when Right moves on G }. We define the elements

of G L as the Left options of G. We denote a Left option as GL. We define analogous

terms for Right. In this paper, we will write G = {GL|GR}, where GL ranges over all

possible Left options and GR ranges over all possible Right options.

2



A game G is a short game if it meets the following two properties:

• G has finitely many sub positions

• There exists no infinite sequences of moves on G, i.e., the the game eventually ends.

All games in this paper are short games. We play under the convention that the first

player unable to move loses. We also assume that every BR Hackenbush game we play

has a finite number of edges.

Theorem 1.1. Every Blue Red Hackenbush game G is a short game.

Proof. Let G be a BR Hackenbush game. We’ll view G as a graph of blue and red edges.

By assumption, G has n edges where n some non negative integer. Every move on G

reduces the number of edges by at least one. So in at most n moves, G will be empty. This

implies there are no infinite sequences of moves on G. Moreover, G has n edges and so

has a finite number of subgraphs. Every sub position G is a subgraph of G. We can

conclude G is short.

1.3 Short Games

In this section we will construct all short games. We will define a certain relation

between short games, and see that the set of equivalence classes along with a certain

addition form a partially ordered abelian group.

Define 0 = {|} and G̃0 = {0}. We recursively define the short games born on day n by

G̃n = {{GL|GR} : GL,GR ⊂ G̃n−1}. We define G̃=
⋃

n∈N G̃n as the set of short games.

We define disjunctive sum on G̃ as G+H = {GL +H,G+HL|GR +H,G+HR}.

Theorem 1.2. (G̃,+) is a abelian semigroup.

3



Proof. We first prove that addition is commutative by induction. Observe,

G+H = {GL +H,G+HL|GR +H,G+HR}

= {H +GL,HL +G|GR +H,HR +G} (By induction)

= H +G

(1.1)

The proof for associativity is similar.

We define the outcome class of a game, denoted o(G), in the following way:

o(G) = L ⇐⇒ Left can win going first or second

o(G) = N ⇐⇒ The first player to move wins

o(G) = P ⇐⇒ The second player to move wins

o(G) = R ⇐⇒ Right can win going first or second

Theorem 1.3. (Fundamental Theorem of Combinatorial Game Theory) For any short

game G either Left can win playing first or Right can win playing second but not both.

Proof. Let G be a short game and GL be an arbitrary Left option of G. Then by induction

and symmetry, Right can win GL playing first or Left can win GL playing second but not

both. If, for all left options GL, Right can win playing GL first, then Right can win G

playing second. On the other hand, if there exists a Left option GL such that Left can win

playing second, then Left can win G by moving to such a GL. It is clear exactly one of

these two cases must hold. This proves the claim.

Corollary 1.4. Every short game G belongs to exactly one outcome class.

4



Proof. By Theorem 1.3, every short game G belongs to L ,R,N , or P . If a game G

belonged to more than one outcome class, then we would have a counter example to

Theorem 1.3.

Lemma 1.5. If X belongs to P then o(G+X) = o(G).

Proof. There’s two cases to consider:

Case 1: Suppose Left can win G playing second. Suppose Right moves first on G+X .

Then Left is guaranteed a response on whichever component Right moved on. Left can

continue this strategy until Right eventually runs out of moves.

Case 2: Suppose Left can win G playing first. Then Left has a winning move on G

which we denote as GL. Observe that Left can win GL playing second. Hence, Left’s

move to GL +X is a winning move by the strategy in case 1.

Lemma 1.6. If G and H belong to L or P , then G+H also belongs to L or P .

Proof. It is enough to show Right cannot win going first. If Right does go first, then by

our hypotheses, Left must have a response in the same component. So Left can keep

responding in whichever component Right moves in. Therefore, Left will not run out of

moves before Right, and since these games are short, Right must eventually run out of

moves.

Definition 1.7. We define the negative of a short game as −G = {−GR|−GL}.

Definition 1.8. (Preorder on G̃) We define a relation ≥ on G̃ by saying that G≥H if and

only if o(G+(−H)) = L or P .

Theorem 1.9. ≥ is a preorder on G̃.

Proof. (Reflexive): Consider the game G+(−G). Then any move by the first player can

be mimicked by the second player in the other component. This shows the second player

5



will never run out of moves before the first player. Since both games are short, the first

player must eventually run out of moves. Therefore G+(−G) belongs to P and G≥ G.

(Transitive): Suppose G≥ H and H ≥ J. Then G+(−H) and H +(−J) belong to L

or P . By Lemma 1.6, G+(−H)+H +(−J) belongs to L or P . By Lemma 1.5 and

the fact that H +(−H) belongs to P , we have G+(−J) belongs to L or P .

Lemma 1.10. Let G,H be short games. Then −(G+H) = (−G)+(−H).

Proof. We have

−(G+H) =−{GL +H,G+HL|GR +H,G+HR}

= {−(GR +H),−(G+HR)|− (GL +H),−(G+HL)} (By Definition 1.7)

= {−GR−H,−G−HR|−GL−H,−G−HL} (By induction)

= (−G)+(−H)

(1.2)

Theorem 1.11. For all short games G,H,X, G≥ H implies G+X ≥ H +X.

Proof. Using Theorem 1.2 and Lemma 1.10,

(G+X)+(−(H +X)) = G+(X +(−X))−H. Since X +(−X) belongs to P , Lemma

1.5. gives us o(G−H) = o(G+X +(−(H +X)). Since G≥ H, we have

G+X ≥ H +X .

We have shown (G̃,+) is a preordered abelian semigroup. Next, define a relation on

G̃ as G = H if and only if G≥ H and H ≥ G.

Theorem 1.12. The relation defined above is an equivalence relation on G̃.

Proof. Let G,H,J ∈ G̃.
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(Reflexive): We’ve shown G+(−G) belongs to P . Equivalently, G≥ G which shows

G = G.

(Symmetry): Suppose G = H. Then G≥ H and H ≥ G. Equivalently, H ≥ G and

G≥ H. So, H = G.

(Transitivity): Suppose G = H and H = J. Then G≥ H and H ≥ J. Since ≥ is

transitive, we have G≥ J. Similarly, J ≥ G. So, G = J.

We define G to be the set of equivalence classes formed by G̃ and the relation above.

We refer to the elements of G as game values. We define addition in G as

[G]+ [H] = [G+H]. We also define a relation ≥ on G by [G]≥ [H] if and only if

G′ ≥H ′ for some G′ ∈ [G] and some H ′ ∈ [H]. We say [G] |B [H] if and only if [G] 6≥ [H].

We will show that (G,+) is a partially ordered abelian group.

Theorem 1.13. The relation [G]≥ [H] if and only if G≥ H for some G ∈ [G] and some

H ∈ [H] is well defined.

Proof. Let [G], [H] be game values and G,G′ ∈ [G] and H,H ′ ∈ [H ′]. Suppose G≥ H.

We want to show G′ ≥ H ′. Note that H = H ′ implies −H =−H ′. Hence, −H ′ ≥−H. We

also have G′ ≥ G. Observe,

G′+(−H ′)≥ G+(−H ′) (By Theorem 1.11)

G+(−H ′)≥ G+(−H) (By Theorem 1.11)

G′+(−H ′)≥ G+(−H) (Since ≥ in G̃ is transitive)

(1.3)

Using transitivity again, we get G′+(−H ′)≥ 0. Hence, G′+(−H ′) belongs to L or

P which implies G′ ≥ H ′.

Theorem 1.14. ≥ is a partial order on G.

Proof. Let [G], [H], [J] be game values.

(Reflexive): We see that G≥ G since G+(−G) belongs to P . Therefore, [G]≥ [G].
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(Transitive): Suppose [G]≥ [H] and [H]≥ [J]. Then (G+(−H))+(H +(−J)) is the

sum of two games that belong to L or P . Hence, the sum also belongs to L or P . We

can rewrite the sum as G+(−H +H)+(−J). Since −H +H belongs to P , we may

conclude the outcome of G+(−J) is the same as the outcome of G+(−H +H)+(−J).

Hence, G≥ J. This implies [G]≥ [J].

(Anti-symmetry): Suppose [G]≥ [H] and [H]≥ [G]. Then G≥ H and H ≥ G. By our

definition of =, we have G = H which implies [G] = [H].

Theorem 1.15. The addition defined above is well defined.

Proof. Let [G], [G′], [H], [H ′] ∈G and suppose [G] = [G′] and [H] = [H ′]. We want to

show [G+H] = [G′+H ′]. We see G≥ G′ and H ≥ H ′. So, G−G′ and H−H ′ are in L

or P . Then the game (G+H)− (G′+H ′) = (G−G′)+(H−H ′) belongs to L or P .

Equivalently, G+H ≥ G′+H ′. Using a symmetric argument, G′+H ′ ≥ G+H. This

shows [G+H] = [G′+H ′].

Theorem 1.16. (G,+) is a commutative semigroup.

Proof. This is true because (G̃,+) is a commutative semigroup.

Theorem 1.17. [0] is the identity in G.

Proof. Observe, [G]+ [0] = [G+0] = [G] for all [G] ∈G.

Lemma 1.18. If [G]≥ [H] then [G]+ [J]≥ [H]+ [J].

Proof. First we’ll show that if G≥ H then G+ J ≥ H + J. Observe that

(G+ J)+−(H + J) = (G+(−H)+(J+(−J)) is a sum of games belonging to L or P .

Therefore, G+ J+−(H + J) also belongs to L or P . This shows G+ J ≥ H + J. In

particular, if [G]≥ [H] then G≥ H. We’ve shown this implies G+ J ≥ H + J. And this

implies [G]+ [H]≥ [H]+ [J].

Theorem 1.19. If [G] = [H] then [G]+ [J] = [H]+ [J].
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Proof. Now suppose G = H. Then G+ J ≥ H + J and G+ J ≤ H + J. By definition, we

have equality which proves the theorem.

Lemma 1.20. o(G) = P if and only if [G] = [0]

Proof. (=⇒) : Suppose o(G) = P . Then G and −G belong to P . Therefore, G≥ 0 and

0≥ G. Equivalently, [G] = [0].

(⇐=) : Suppose [G] = 0. Then G and −G belong to L or P . If one of them, say G,

belongs to L , then we must have −G belongs to R, a contradiction. Therefore, G and

−G belong to P . In particular, G belongs to P .

Theorem 1.21. For any [G] ∈G, we have [G]+ [−G] = [0].

Proof. We see that G+(−G) is a second player win by a TDTD argument. By the

previous lemma, [G]+ [−G] = [G+(−G)] = [0].

We may conclude (G,+) is a partially ordered abelian group. At this point, we will

drop the bracket notation.

Corollary 1.22. Let G,H be game values. Then G+(−H) = 0 if and only if G = H.

Proof. We have

G+(−H) = 0 ⇐⇒ G+(−H)+H = 0+H ⇐⇒ G+0 = H ⇐⇒ G = H.

In future sections, we will use the above corollary to prove certain formulas.

1.4 Canonical Forms

Intuitively, some moves are more optimal than others. In these cases, it seems intuitive

to ignore moves that are not optimal. What we mean by optimal moves will be the topic

of this section.

Definition 1.23. Let G be a game and GL1 and GL2 be two Left options of G. We say GL2

is dominated by GL1 if GL1 ≥ GL2 . (I.e., GL1−GL2 is a loss for Right going first).
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Theorem 1.24. Let G be a game. Suppose GL′ is a dominated Left option. Write

G = {GL′,GL|GR} and H = {GL|GR}, where GL ranges over all Left options except for

GL′ . Then G = H.

Proof. We want to show G−H = 0 which is equivalent to showing G−H is a second

player win. Note that G−H = {GL′,GL|GR}+{−GR|−GL}. Suppose Left moves first to

GL′−H. By assumption, there exists GL such that GL ≥ GL′ . Hence, Right may move to

GL′−GL ≤ 0. Right has forced a win. Every other move by one player has a clear

corresponding move by the other player to 0. In particular, if Left moves to GL−H, then

Right may respond to GL−GL = 0. And if Left moves to G−GR, then Right may

respond to GR−GR = 0. A similar argument applies to Right’s opening moves. We may

conclude that G−H is a second player win, i.e., G = H.

Example 1.25. We define B = {1|0} and A = {1|0,−B}. We’ll show {B,A|1}= {B|1}.

By the previous theorem, it suffices to show B−A≥ 0, i.e., that Right cannot win playing

first. We have

B−A = {1|0}+{B,0|−1}

Right has two options: 0+{B,0|−1} or {1|0}+(−1). In the former, Left can respond to

0+0 and in the latter, Left can respond to 1+(−1). Either way, Left has a winning move.

This shows B dominates A and the equality follows.

Lemma 1.26. For short games G,H,J if G |B H and H ≥ J then G |B J. (i.e., Left has a

winning move on G− J.

Proof. Observe that G− J = (G−H)+(H− J). We’re given when playing G−H, Left

has a winning move, say (G−H)L. Fix this (G−H)L. Then (G−H)L ≥ 0. The sum of

games that are zero or positive is a game that is zero or positive. Since (G−H)L ≥ 0 and
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H− J ≥ 0, we have (G−H)L +(H− J)≥ 0. This shows that (G−H)L +(H− J) is a

winning move for Left, which proves the lemma.

Lemma 1.27. If J C| H then G+ J C| G+H.

Proof. Consider the difference game (G+H)− (G+ J). We can rewrite this as

(G−G)+(H−J). We would like to show 0 6≥ (G+G)+(H−J) i.e., Left has a winning

move as the first player. Since J C| H, we have Left has a winning move on H− J. Fix

such an option (H− J)L. Consider Left’s option (G+G)+(H− J)L. This is a sum of

games that are ≥ 0. Hence, (G+G)+(H− J)L ≥ 0. This shows Left has a winning move

on (G+H)− (G+ J).

Definition 1.28. Let G be a game and GL be a Left option. Suppose there exists Right

option GLR such that GLR ≤ G. We say GL is reversible through GLR.

Theorem 1.29. Let G = {GL′,GL|GR} be a game. Suppose GL′ is reversible through GL′R.

Let H = {GL′RL,GL|GR} where GL′RL ranges over all Left options of GL′R. Then G = H.

Proof. Let G and H be defined as above. We want to show G−H = 0 i.e. G−H is a

second player win. Note, G−H = {GL′,GL|GR}+{−GR|−GL′RL,GL}. Consider Left’s

opening move to GL′−H. Right can move to GL′R−H. Left has two choices. If Left

moves to GL′RL−H, then Right has a winning move on H to 0. Otherwise, Left moves to

GL′R−GR. We have GL′R ≤ G C| GR. By Lemma 1.26., Right has a win on GL′R−GR.

On the other hand, suppose Right moves first to G−GL′RL. Observe GL′RL C| GL′R.

Hence, G−GL′RL |B G−GL′R ≥ 0. By Lemma 1.26., G−GL′RL |B 0 which implies Left

has a winning response.

All other openings moves have a Tweedle Dee Tweedle Dum response to 0. We may

conclude G = H.
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Example 1.30. Let G = {0,A,{1−A|0}|−1+A}. Write GL = {1−A|0}. We see

GLL = 1−A and GLLR = 1−1 = 0. So, Left cannot win playing first on GL which implies

GL ≤ 0. Since we can ignore dominated options, we have G = {0,A|−1+A}. Write

GL′ = A. We show GL′ is reversible through some GL′R. Consider GL′R = 0. To see that

GL′R ≤ G, observe that if Right plays first on G, then they must play to −1+A. Left can

respond to −1+1 = 0. This shows Right cannot win playing first on G. This proves the

equality.

Definition 1.31. A short game G is in canonical form if for any sub position H of G

(including G itself), H has no dominated options and no reversible options.

Theorem 1.32. Let G be a short game. There exists a short game K in canonical form

such that G = K.

Proof. Write G = {GL|GR}. By induction, we can assume all proper sub positions of G

are in canonical form. To put G in canonical form, we have the following method:

• 1) Replace all reversible options GL with the appropriate GLRL. Do the same for

reversible options GR.

• 2) Remove all dominated options.

• 3) If the resulting game has no reversible options, STOP. Otherwise, return to step 1).

The above process must end in a finite number of steps since G is short. Define the

resulting game as G′. Then G′ = G and G′ is in canonical form.

Definition 1.33. Let G,H be games. We say G∼= H if and only if their game trees are

identical (i.e., they are equal in G̃).

Theorem 1.34. If H = K and H,K are in canonical form, then H ∼= K.

Proof. Let HL be a Left option of H. Then HL−K C| 0. If Right has a winning move on

HL, then HLR−K ≤ 0. But that implies HLR ≤ K = H, i.e., HL is reversible through HLR.
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This contradicts our assumption that H is canonical. Hence, Right’s winning move must

be of the form HL−KL ≤ 0. This implies HL ≤ KL. Fix this KL.

Now suppose Right were to move first to H−KL. Then Left has a winning move. If it

were to H−KLR then H−KLR ≥ 0 i.e., K ≥ KLR. This implies KL is reversible through

KL which contradicts our assumption that K is canonical. Hence, Left’s winning move

must be of the form HL′−KL. This implies HL ≤ KL ≤ HL′ . But H has no dominated

moves. It follows that HL = KL = HL′ .

We may conclude for all HL, there exists KL such that HL = KL and vice versa. We

may conclude the same for Right options. Next, we’ll show H ∼= K. By definition of

canonical, every sub position of H and K is canonical. In particular, for each HL and KL

such that HL = KL, we have HL ∼= KL by induction. It follows that H ∼= K.

1.5 Simplicity

Our main tools for studying Hackenbush games are the Simplicity Theorem and the

Simplicity Rule. We will show that every BR Hackenbush position is a number (Definition

1.35). By the Simplicity Theorem, every BR Hackenbush position can be identified as a

certain dyadic rational. The Simplicity Rule gives us a way to identify this dyadic rational.

Note that the correspondence between numbers and dyadic rationals respects partial

ordering. In particular, adding numbers (Definition 1.35) respects ordinary arithmetic. For

example, if a BR Hackenbush position can be identified as 1
2 , then its outcome class is L .

Definition 1.35. We say G is a number if HL < HR holds for all sub positions H of G

(including G itself).

Lemma 1.36. If G is a number, then GL < G < GR for all Left and Right options of G.

Proof. Let GL be a Left option of G. We’ll show the difference G−GL is a win for Left.

Left can win going first by moving to GL−GL. Suppose Right moves first. If Right

moves on G, we have GR−GL > 0 by definition of number. Hence, Left has a winning
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response. Otherwise, Right moves on −GL. The resulting game is G+(−GLL). Left

responds to GL +(−GLL). This game is a positive number and Left has a winning move

by induction. We may conclude GL < G for all Left options of G. By a similar argument,

G < GR for all Right options of G.

Theorem 1.37. If G is a number, then −G is a number.

Proof. Suppose G is a number. Then GL < GR for all Left and Right options of G. We

can rewrite the inequality as −GR <−GL. But the Left options of −G look like −GR and

the Right options of −G look like −GL. Hence, (−G)L < (−G)R for all Left and Right

options of −G. We may conclude −G is a number.

Theorem 1.38. If G and H are numbers, then G+H is a number.

Proof. By definition of G and H being numbers, GL < GR and HL < HR. This implies

GL +H < GR +H and G+HL < G+HR. Hence, it is enough to show GL +H < G+HR

and G+HL < GR +H. The first inequality can be rewritten as 0 < (G−GL)+(HR−H).

This inequality is true by lemma 1.36. The second inequality can be rewritten as

0 < (GR−G)+(H−HL). This inequality is also true by Lemma 1.36.

The set of numbers is a non empty subset of G closed under addition and negatives.

We may conclude that the set of numbers forms a subgroup of G.

Definition 1.39. We define D= { a
2b : a,b ∈ Z} and we call this set the dyadic rationals.

Note that (D,+) is a subgroup of (Q,+).

Our next goal is to show there is a group isomorphism from the subgroup of numbers

to the group of dyadic rationals. The Simplicity Theorem and Simplicity Rule will follow

shortly after, both of which are crucial to the study of Hackenbush.
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We begin by defining the following short games: Recall 0∼= {|}. Next, we define[
1
]
= {0|}. We can think of

[
1
]

as being a game where Left has an advantage worth 1

move. By playing the difference game, we see that
[
1
]
= {0|

[
1
]
}+{0|

[
1
]
}. Hence, we

define
[1

2

]
= {0|

[
1
]
}. Similarly, we see that

[1
2

]
= {0|

[1
2

]
}+{0|

[1
2

]
}. Hence, we define[1

4

]
= {0|

[1
2

]
}. This suggests the more general definition:

Definition 1.40. For any nonnegative integer n, we define
[ 1

2n

]
= {0|

[ 1
2n−1

]
}.

We note that
[ 1

2n

]
is strictly greater than 0, by induction.

Lemma 1.41.
[ 1

2n

]
+
[ 1

2n

]
=
[ 1

2n−1

]
for any integer n≥ 1.

Proof. We will show that the game
[ 1

2n−1

]
−
[ 1

2n

]
−
[ 1

2n

]
is a second player win. Suppose

Left moves first. If Left moves on
[ 1

2n−1

]
, then Right necessarily moves on one of the

−
[ 1

2n

]
, which is negative. On the other hand, Left can open by moving to[ 1

2n−1

]
−
[ 1

2n−1

]
−
[ 1

2n

]
=−

[ 1
2n

]
, which is negative. We may conclude Left cannot win

going first.

Next, we show Right cannot win by going first. If Right moves on
[ 1

2n−1

]
, then the

resulting game is
[ 1

2n−2

]
−
[ 1

2n

]
−
[ 1

2n

]
. By induction,

[ 1
2n−2

]
−
[ 1

2n

]
−
[ 1

2n

]
=
[ 1

2n−1

]
+
[ 1

2n−1

]
−
[ 1

2n

]
−
[ 1

2n

]
=

([ 1
2n−1

]
−
[ 1

2n

])
+

([ 1
2n−1

]
−
[ 1

2n

])
> 0.

On the other hand, Right can open by moving on −
[ 1

2n

]
. The resulting game is[ 1

2n−1

]
+0−

[ 1
2n

]
. Left wins by moving to

[ 1
2n−1

]
+0−

[ 1
2n−1

]
= 0. This shows Right

cannot win by moving first. We may conclude the desired equality.
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Lemma 1.42. Let A,B be posets. If f : A→ B is a mapping that respects partial ordering,

then f is injective.

Proof. Suppose f (x) = f (y). Then f (x)≥ f (y) and f (x)≤ f (y). Since f respects partial

ordering, we have x≥ y and x≤ y. Equivalently, x = y. This shows f is injective.

Theorem 1.43. There exists an injective group homomorphism from D to G.

Proof. For odd a, define a mapping by a
2b 7→ a

[ 1
2b

]
where

a
[ 1

2b

]
=
[ 1

2b

]
+ · · ·+

[ 1
2b

]
︸ ︷︷ ︸

a times

(1.4)

Let a
2b ,

m
2n ∈ D. Then a

2b +
m
2n maps to

(a2n−b +m)
[ 1

2n

]
= a2n−b

[ 1
2n

]
+m

[ 1
2n

]
= a
[ 1

2b

]
+m

[ 1
2n

]
. The last equality is true since

repeated applications of Lemma 1.41 shows 2n−b
[ 1

2n

]
=
[ 1

2b

]
. We may conclude that this

mapping is a group homomorphism. Moreover, this mapping respects the partial ordering

of G, and is therefore injective.

We can now identify the game a[ 1
2b ] with the dyadic rational a

2b . Because of this, we

will now drop the bracket notation.

Definition 1.44. Let I ⊂ D. Then I is an interval if for any x,y ∈ I with x > y, we have

z ∈ I for all z such that x > z > y.

Definition 1.45. Let G be a short game. Define the birthday of G, denoted b(G), as the

smallest integer n such that G ∈Gn. For completeness, we also define the formal birthday

of G, denoted b̃(G), as the smallest integer n such that G ∈ G̃n.

Note that b(G) only cares about the game value G, while b̃(G) cares about the

structure of G, i.e., its options.
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Lemma 1.46. Let a
2b ∈ D where a is odd. Then a

2b = {a−1
2b |a+1

2b } is the canonical form of

a
2b .

Proof. Write
a
2b =

1
2b +

1
2b + · · ·+

1
2b︸ ︷︷ ︸

a times

(1.5)

Recall that 1
2b = {0| 1

2b−1}. Hence there is exactly one Left option, and it is

0+ 1
2b + · · ·+ 1

2b = a−1
2b . Similarly, there is exactly one Right option, and it is

1
2b−1 +

1
2b + · · ·+ 1

2b = 2
2b +

1
2b + · · ·+ 1

2b = a+1
2b . We may conclude a

2b = {a−1
2b |a+1

2b }.

Note that a
2b has no dominated options since that would require at least two Left

options or at least two Right options. Next, we will show a
2b has no reversible options. For

clarity of notation, we define G = a
2b . Note that a−1

2b = a′

2b′ in reduced form where a′ is odd

and b′ < b. We know a′

2b′ = {
a−1
2b − 1

2b′ |
a−1
2b + 1

2b′ }. Hence, GLR = a−1
2b + 1

2b′ where b′ < b.

Therefore, GLR ≥ a−1
2b + 1

2b−1 = a+1
2b > G. It follows that GL is not reversible through GLR.

We may conclude G has no reversible Left options. By a similar argument, we may

conclude G has no reversible Right options. This proves the lemma.

Lemma 1.47. If G is in canonical form, then b̃(G) = b(G).

Proof. Let b̃(G) = n. Certainly the game value of G occurs at or before the formal

birthing of G. Hence, b̃(G)≥ b(G). Assume by contradiction that b̃(G)> b(G). Then

there is a short game H such that b(G) = b̃(H). But the canonical form of H, call it K, is

certainly born by the time H is born. So, b(G) = b̃(H)≥ b̃(K). But G∼= K since

canonical forms are unique, and thus we have b(G)≥ b̃(G). By our assumption, this gives

b̃(G)> b(G)≥ b̃(G), a contradiction. We may conclude b̃(G) = b(G).

Lemma 1.48. If G is in canonical form, then b(GL)< b(G) and b(GR)< b(G) for all

GL,GR.
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Proof. Let GL and GR be options of G. We have that G is in canonical form. By

definition of canonical, we have that all of the options of G are canonical. Hence,

b(G) = b̃(G)> b̃(GL) = b(GL) (1.6)

where the middle inequality follows by our recursive construction of the short games.

A similar argument shows b(GR)< b(G).

Lemma 1.49. Let I ⊂ D be a non empty interval. Then there exists a unique x ∈ I of

minimal birthday.

Proof. Suppose x,y ∈ I have the same birthday, say n, and are in canonical form. We may

assume x > y. Then x− y > 0. So, Left has a winning move of the form xL− y≥ 0 or

x−yR ≥ 0. In the former case, we have x > xL ≥ y which implies xL ∈ I. In the latter case,

we have x≥ yR > y which implies yR ∈ I. Observe that xL and yR have birthdays strictly

less than n. So, we have found an element of strictly less birthday. Repeating this process

at most n times will yield a unique element of minimal birthday.

Theorem 1.50. (Simplicity Theorem): Let G be a short game and define

I(G) = {x ∈ D : ∀GL,GR,GL C| x C| GR}. If I(G) 6= /0, then G = x where x is the unique

element in I of minimal birthday.

Proof. Suppose I(G) 6= /0 and let x be the unique element in I(G) of minimal birthday.

Let us show G− x = 0. It suffices to show G− x is a second player win. Suppose Left

goes first. Left has two options: GL− x and G− xR. But GL− x C| 0 by our definition of

I(G), so this is a losing move for Left. On the other hand, xR /∈ I(G) since it has strictly

less birthday than x. Hence, there is a Left option of G such that GL ≥ xR or there is a

Right option of G such that GR ≤ xR. If the latter is true, then Right has a winning

response on G− xR. If the former is true, then GL ≥ xR > x which contradicts the fact that
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x ∈ I(G). We may conclude Left cannot win going first. Using a similar argument, we

have that Right cannot win going first. This shows G = x.

Theorem 1.51. Simplicity Rule: Let G be a short game and define

I(G) = {x ∈ D : ∀GL,GR,GL C| x C| GR}. Suppose I(G) is non empty. Then the unique

element in I(G) of minimal birthday can be found as follows:

1) If I(G) contains an integer, then x is the integer of least magnitude.

2) Otherwise, x is the unique element of minimal denominator.

Proof. First, suppose that I(G) contains a positive number and a negative number. Then

I(G) contains 0 and the unique element of minimal birthday is 0. Therefore, we may

assume I(G) contains only positive numbers. Suppose I(G) contains an integer. Write the

integers of I(G) in ascending order as n1 < n2 < n3 < .. . . We have n1 = {n1−1|}. We

will show G−n1 = 0. Suppose Left goes first. They have one option: GL−n1. Since

n1 ∈ I(G), we have GL−n1 C| 0. Hence, Right can force a win. Suppose Right goes first.

They have two options: GR−n1 and G− (n1−1). In the former case, we have

GR−n1 |B 0 and so Left can force a win. In the latter case, we have n1−1 /∈ I(G).

Hence, we can find a Left option such that GL ≥ n1−1 or we can find a Right option

such that GR ≤ n1−1. The latter case can’t occur, since it would imply GR ≤ n−1 < n.

So, we must have GL− (n1−1)≥ 0. This shows Left has a winning response on

G− (n1−1). We may conclude G = n1.

Now suppose I(G) contains no integers. Let x = a
2b be the unique element of minimal

denominator. First, we prove that such an element exists. To do so, we will show that if

there are two distinct elements with the same denominator in I(G), then we can find an

element in I(G) of strictly less denominator. Suppose m
2n and m+k

2n are elements in I(G), in

reduced form. If k ≥ 2, then (m+1)/2n ∈ I(G). On the other hand, if k = 1 then either

m/2n or (m+ k)/2n is not in reduced form. This proves the claim. Now we will show

G− x = 0.
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Suppose Left goes first. They have two options: GL− x and G− xR. Since GL C| x, we

have that Right has a winning response on GL− x. As for G− xR, since xR is a number of

strictly less denominator than x, we have xR /∈ I. Then we can find an option of G such

that GL ≥ xR or GR ≤ xR. But the former implies GL ≥ xR > x, a contradiction. So, we

must have GR− xR ≤ 0, which shows Right has a winning response on G− xR. A similar

argument shows Right cannot win moving first. We may conclude G− x is a second

player win, i.e., G = x.

Theorem 1.52. If G is a number, then I(G) is non empty. In particular, if G is a number,

then G is a dyadic rational.

Proof. Suppose G is a number. Then every option of G is a number. By induction, we

may assume I(GL) and I(GR) are non empty for every option of G. By the Simplicity

Theorem, every GL and GR is a dyadic rational. Since G is short, it must have finitely

many options. Therefore, we can find a maximum GL and a minimum GR. Denote these as

GL = a
2b and GR = c

2d where a,c are odd. Then x = GL+GR

2 is a dyadic rational in between.

In particular, GL < x < GR for all options of G. We may conclude I(G) is non empty.

Let G be the game in Figure 1.3.

Fig. 1.3: Example of Simplicity Rule

We will determine which number G is equal to. We can rewrite G as in Figure 1.4.

Evaluating the strings, we have the following. The empty string is worth 0. The string that

is a single blue edge is equal to {0|}= 1. The string with one blue edge on the ground

and one red edge on top is equal to {0|1}. By the Simplicity Rule, {0|1}= 1
2 . Evaluating
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Fig. 1.4: Example of Simplicity Rule Continued

the longest string gives {0, 1
2 |1,

3
4}=

5
8 . Removing dominated options, we have

G = {1
2 |

5
8}. Using the Simplicity Rule, we have G = 9

16 .

We have shown that if G is a short game and a number, then G is a dyadic rational.

But in general, I(G) may be empty. In this case, G is not a number. Some examples of

non numbers are {50|−50},{0|0} and {0|{0|0}}. The latter two games are usually

referred to as ∗ and ↑.
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2 BALANCED BLUE RED HACKENBUSH SPIDERS

2.1 Introduction

In this section we begin our study of Blue Red Hackenbush spiders. Various classes of

spiders have been studied such as 1 legged spiders, 2 legged spiders, and redwood spiders.

Building on this, we prove a solution to a certain kind of n-legged spiders.

2.2 Definitions

Definition 2.1. Let G be a Blue Red Hackenbush game. Let e be an edge in G. We define

the height of e as the length of the shortest path from e to the ground.

In Figure 2.1, e1 has height 1, e2 has height 4 and e3 has height 3.

Fig. 2.1: Example of Height

Definition 2.2. Define S = ε0 : ε1 : ε2 : · · · : εn to be a string of height n+1 where

εi ∈ {−1,1}. Each εi represents an edge at height i+1. If εi = 1, then εi is a blue edge. If

εi =−1, then εi is a red edge. Note, ε0 is the edge on the ground and εn is the highest

edge. We define the ρ function on BR Hackenbush strings as

ρ(S) =
n

∑
k=0

εk
1
2k

where n+1 is the length of the string.

Definition 2.3. We define a Blue Red Hackenbush spider as a collection of Blue Red

Hackenbush strings attached at their highest edges. The vertex at which the strings attach
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is called the body. We allow for strings to be attached on top of the body; we refer to

these strings as arms.

It is helpful to describe a spider in terms of its legs and arms. Let S be a spider with

legs X1, . . . ,Xk and arms A1, . . . ,Am. We define the following notation

S = X1/X2/. . ./Xk\A1\ . . .\Am. Figure 2.2 and Figure 2.3 are examples of spiders.

Fig. 2.2: Example of a Spider

Fig. 2.3: A Spider of the Form X1/X2/X3\A1\A2

2.3 Strings

In this section we give a solution to strings.

Theorem 2.4. When playing in a string, higher moves dominate lower moves.

Proof. We will show it is true for Left. Let S be an arbitrary string with at least two blue

edges. We let S be the string in Figure 2.4, where m is some nonnegative integer.
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Fig. 2.4: A String With Two Blue Edges

Consider the difference game SL1−SL2 in Figure 2.5.

Fig. 2.5: Difference Game of S

For clarity, we label the bottom parts of the strings x and −x. Note that the negative of a

Blue Red Hackenbush game is drawn by reversing the colors. We will show Right cannot

win going first. If Right moves above the edge labelled L2, then Left can respond by

deleting L2. The result is the 0 game with Right to move. Hence, Right loses. If Right

moves at an edge of height strictly less than the height of the edge L2, then Left plays at
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the same height in the other string. The result is the 0 game with Right to move. Hence,

Right loses. We may conclude SL1−SL2 ≥ 0 i.e., SL1 dominates SL2 .

Lemma 2.5. Let S be a string with a swap foot. WLOG, suppose the edge on the ground

is blue. Then 0 < S < 1.

Proof. Let S be the game in Figure 2.6.

Fig. 2.6: A String with a Swap Foot

First we show S > 0. If Right goes first, then no matter where they move, Left can delete

the edge labelled L and win. This shows S≥ 0. If Left goes first, they win by deleting the

edge L. This shows S 6= 0. Hence, S > 0. Now consider the difference game S−1. If Left

goes first, there are two cases:

Case 1: Left moves above the swap foot. In this case, Right should delete the edge

labelled R. The result is 1−1 = 0.

Case 2: Left deletes the edge on the ground in S. The result is 0+(−1) =−1.

Either way, Left cannot win playing first. Hence, S−1≤ 0. But Right has a winning

move as the first player by moving to SR−1 = 1−1 = 0. Hence, S−1 6= 0. We may

conclude S−1 < 0. This proves the lemma.
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Theorem 2.6. (vanRoode’s string evaluation): For arbitrary n≥ 1, define a string

S = ε0 : ε1 : ε2 : · · · : εn−1. Assume S has a swap foot. Then S = ρ(S).

Proof. We have seen this is true when n−1 = 2. Proceeding by strong induction,

consider the string S : 1. By induction, we know S = a
2n−1 for some odd integer a. We

know players will prefer to move highest. Hence, Left will delete the highest edge which

results in S. Right will delete their highest edge which results in S+ 1
2n−1 . Hence,

S : 1 = { a
2n−1 | a

2n−1 +
1

2n−1}. We see that I(S : 1) is non empty. By lemma 2.4., S : 1 is not

equal to an integer. Hence, we seek the unique element of minimal denominator in

I(S : 1). In particular, we claim this number is S+ 1
2n .

Any element in I(S : 1) can be written as a
2n−1 +

b
2c where b

2c is reduced. If c≤ n−1,

then a
2n−1 +

b
2c it not an element of I(S : 1). If c = n, then we must have b = 1, for if b 6= 1

then a
2n−1 +

b
2c is not an element of I(S : 1). Hence, I(S : 1) contains an element in reduced

form whose denominator is 2n. The only other cases are elements where c > n. By the

Simplicity Rule, we have found the unique element of minimal denominator and so

S : 1 = S+ 1
2n .

If we had instead considered S : (−1), then by a similar argument we have

S : (−1) = {S− 1
2n−1 |S}= S− 1

2n . This completes the induction.

The following lemma is useful for finding upper and lower bounds.

Lemma 2.7. An edge is worth at least as much on the ground as it is attached to a

component.

Proof. [3]

Theorem 2.8. We can always peel off edges on a string until the string has a swap foot in

the following way:

Note, G in Figure 2.7 is an arbitrary Blue Red Hackenbush position.
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Fig. 2.7: Peeling Off Edges

Proof. [3]

Theorem 2.6. and 2.8. combine into a solution for strings.

2.4 Arches

In this section we present a solution to two legged spiders. Proofs of these formulas

can be in [4].

Definition 2.9. We refer to a spider with two legs as an arch.

Theorem 2.10. Let A,B be strings with, both with a swap foot, and of the same length,

say n≥ 2. Then A/B = A+B.

Proof. [4].

Theorem 2.11. Let A,B be balanced strings of length n≥ 2. Then

(A : 1)/B = A : 1+B : 1.

Proof. [4].

The above formulas say that solving arches reduces to solving strings, since every

arch can be equated to a sum of strings. We can think of the extra 1
2n−1 in Theorem 2.11.

as a ’bonus’. Why bonuses occur is still not fully understood, aside from ”the math just

works out”.
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To evaluate the arch in Figure 2.8, we need only evaluate the strings on the right hand

side. The sum of strings evaluates to 5
8 +

1
8 = 3

4 . So, the arch is equal to 3
4 .

Fig. 2.8: An Arch with no Bonus

To evaluate the arch in Figure 2.9, we evaluate the strings on the right hand side. The

sum of strings evaluates to 11
16 +

3
16 = 14

16 = 7
8 . So, the arch is equal to 7

8 . Note that the blue

edge gets ”doubled”.

Fig. 2.9: An Arch with a Bonus

2.5 Balanced Spiders

In this section, we present a solution to balanced spiders. The results here are joint

work with Tim Hsu and Ardak Kapbasov. We will present proofs of the author’s main

contributions. For theorems that the author did not significantly contribute to, we will

state them without proof. In particular, we will only state Theorem 2.16, which is due to

Kapbasov.
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Definition 2.12. A string has a swap foot if the two edges closest to the ground have

different color. (i.e. one is red and the other blue).

Definition 2.13. A balanced spider is a spider such that every leg has a swap foot and all

legs share the same number of edges. (i.e., all legs have the same height). We also allow

the possibility for the spider to have arms.

Definition 2.14. We define the height of a balanced spider to be the height of one (and

therefore all) of its legs.

Definition 2.15. Let S be a spider (not necessarily balanced). We define tb to be the

number of blue edges incident to the body and tr to be the number of red edges incident

the body.

Theorem 2.16. (Optimal play is highest) Let S be a balanced spider. If e1 and e2 are two

blue edges in S and e2 has height strictly greater than e1, Se1−Se2 > 0 where Se is the

game that results by deleting edge e. If the height of e1 equals the height of e2 then

Se1 = Se2 .

Proof. The proof is due to Ardak Kapbasov. [3].

Consider the spider G in Figure 2.10.

Fig. 2.10: Edges of Various Height
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Then GL1 > GL2 > GL3 > GL4 . Also, GL3 = GL5 and GL3 > GL6 > GL4 . Knowing that the

optimal strategy for balanced spiders is to delete the highest edge will be crucial for the

remaining arguments in this section.

Lemma 2.17. Let S1 and S2 be strings of height n1 and n2 respectively. If n1 ≥ n2, then

Left may as well play in S1. In other words, SL
1 +S2 ≥ S1 +SL

2 .

Proof. We know that if a player plays in a string, then they will play highest in that string.

Consider the sum S1 +S2 in Figure 2.11.

Fig. 2.11: The Game S1 +S2

It is enough to show SL
1 +S2 ≥ S1 +SL

2 . We see that

SL
1 +S2 = (S1 +S2)−

1
2n1−1 ≥ S1 +S2−

1
2n2−1 = S1 +SL

2

The middle inequality is true since − 1
2n1−1 ≥− 1

2n2−1 when n1 ≥ n2. This proves the

lemma. We note that the height of the moves did not matter.

We note that the above lemma shows that given a sum of strings with swap feet

G1 +G2 + . . . , a player may not necessarily play highest in G1 +G2 + . . . , but rather play

highest in whichever string they move in. And by the above lemma, a player will move in

the string with the most edges.
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Lemma 2.18. Suppose S = X1/X2\(−1) : A is a balanced arch with an arm, i.e., X1/X2

forms a balanced spider and we then attach an arm (−1) : A to that body. Then

S = X1 +X2 +
1

2n−1 ρ((−1) : A) where n is the height of S.

Proof. Note, we could replace (−1) : A with A, but specifying the bottom edge of the arm

is convenient in the following proof. We are also assuming, WLOG, that the bottom edge

of the arm is red. We induct on the length of the arm and take the base case to be when

the length of the arm is empty. This is the balanced arch formula which was proved by

vanRoode [4].

Proceeding by induction, we want to show the game in Figure 2.12 is a second player

win.

Fig. 2.12: Difference Game for Lemma 2.18.

31



Note that m is a nonnegative integer. We also note that the right most string is equal to

ρ(1 : (−(n−1)) :−A). Furthermore, we have

ρ(1 : (−(n−1)) :−A) = 1− 1
2
−·· ·− 1

2n−1 +
1
2n ρ(−A)

=

(
1− 1

2
−·· ·− 1

2n−1

)
+

1
2n ρ(−A)

=
1

2n−1 +
1
2n ρ(−A)

=
1

2n−1 ρ(1 :−A)

(2.1)

Suppose Left moves first. If they move in the spider, they have two kinds of moves. If

they move in A, then Right can mimic this response in −A which results in GLR = 0 by

the induction hypothesis. If Left moves in the legs, they move highest. WLOG, we

assume L1 is a highest edge in the legs. It is enough to show GL1 is negative. We have

GL1 =
1
2n ρ((−m−1) : A)− 1

2n−1 +
1

2n−1 +
1
2n ρ(−A)

≤ 1
2n ρ(−1 : A)+

1
2n ρ(−A) (Assuming m = 0)

≤− 1
2n +

(
1
2n −

1
2n+1

)
+

(
1

2n+1 −
1

2n+2

)
+ . . . (If −A all blue)

< 0

(2.2)

By Lemma 2.17, if Left plays in the strings, then they necessarily play in the longest

string. Whether they move in −A or at the edge of lowest height, Right will have a

winning corresponding move in (−1) : A in the spider. This shows Left cannot win

moving first. Next, we’ll show Right cannot win moving first.

We rewrite the game as shown in Figure 2.13.
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Fig. 2.13: An Equivalent Game

Note, m is a nonnegative integer. We have

GR1 ≥ 1
2n ρ((−1) : A)+

1
2n−1 +

1
2n−1 ρ(1 : (−A)) (by letting m = 0)

=
1

2n−1 (ρ(1 : (−1) : (A))+ρ(1 : (−A))) (Rearranging)

> 0 (sum of two positive numbers)
(2.3)

Lastly, if Right plays in (−1) : A or −A, then Left has a natural winning response. But,

if −A is all blue, then Right’s best move in the strings is at R2. Then Left can respond by

playing highest in the spider’s legs. Using our calculation from earlier, we have

GR2L =
1
2n ρ((−m−1) : A)− 1

2n−1 +
1

2n−2

=
1

2n−2 −
1

2n−1 +
1
2n ρ((−m−1) : A)

> 0

(2.4)

We may conclude Right cannot win going first. This completes the induction.
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Lemma 2.19. Let S = X1/X2/X3 be a balanced spider with 3 legs. Then

S =


X1 +X2 +X3 tb = 1 or 2

X1 +X2 +X3 +
1

2n−1 tb = 3

where the height of S is n. By symmetry (i.e., by considering negatives), the above

formula solves all balanced spiders with three legs.

Proof. We consider two cases:

Case 1: tb = 1 or 2. We want to show the game in Figure 2.14 is a second player win.

Fig. 2.14: Difference Game for Case 1 of Lemma 2.19.

Note X1 = Y1 : 1 and X2 = Y2 : (−1). Since players will play highest in any given

component, the only moves to consider are L1,L2,R1,R2. But

GL1R2 = GR2L1 = GR1L2 = GL2R1 = 0, by vanRoode. This shows G is a second player win.

Case 2: tb = 3.

We want to show the game G in Figure 2.15 is a second player win.
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Fig. 2.15: Difference Game for Case 2 of Lemma 2.19.

We can rewrite Figure 2.15 as Figure 2.16 by adding the top edges of the strings

−X1,−X2,−X3 and the bonus (which is worth − 1
2n−1 ).

Fig. 2.16: A Game Equivalent to Figure 2.15

We note that X3 = Y3 : 1. In particular, the two rightmost strings have height n−1 and so

are each worth − 1
2n−2 . We will show that this game is a second player win. Suppose Left

moves first. If Left moves in the spider then they move highest and we have GL1 =− 1
2n−2 .

If Left moves in the strings, Right has a winning move on R1. We have

GLR1 =− 1
2n−2 +

1
2n−1 ρ(m)< 0. This shows Left cannot win moving first.
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Suppose Right moves first. If Right moves in the spider, we have

GR1 = 1
2n−1 ρ(m)> 0. If Right moves in the strings, have Left move in the spider and we

have GRL1 = 0. This shows Right cannot win moving first which completes the proof.

The above theorem and argument generalize to an arbitrary number of legs.

Theorem 2.20. Let S = X1/X2/. . ./Xk be a balanced spider. Define tb to be the number

of legs whose top edge (i.e. the edge containing the body) is blue. Define tr to be the

number of legs whose top edge (i.e. the edge containing the body) is red. WLOG assume

tb ≥ tr (the case for tr ≥ tb will follow, since negatives of Blue Red Hackenbush positions

are obtained by reversing colors). Define t = tb− tr. Then

S =


X1 +X2 + · · ·+Xk 0≤ t ≤ 2

X1 +X2 + · · ·+Xk +
t−2
2n−1 2 < t

where the height of S is n.

Proof. Let A(k) say the above formula holds and let B(k) say if tb = k and tr = 0 and

M ≥ 0 is a string then S\M = S+ 1
2n−1 ρ(M). The statement B(k) will be used when the

edges incident to the body are all of the same color. We will show

A(k) =⇒ B(k) =⇒ A(k+1) =⇒ B(k+1) =⇒ . . .

for k ≥ 2.

(base case): A(2) is the arch formula, B(2) is the arch with an arm formula, and A(3)

is the tripod formula.

(inductive step): Suppose k ≥ 3. First we’ll show A(k) =⇒ B(k). We induct on the

length of the arm and take the base case to be when the arm is empty. Hence, the base

case is true by A(k). Proceeding by induction, we consider the game G in Figure 2.17.

36



Fig. 2.17: Difference Game for A(k) =⇒ B(k)

Note, the strings above ’see description below’ represent k−2 strings of the form

(−1) : (n−1) and the rightmost string is (−1) : (n−1) : (−A) where A may be empty.

Since we know the arm is nonnegative, it is convenient to write it as 1 : A (as we have

done above) instead of A. Furthermore, using vanRoode’s string evaluation, we have

(−1) : (n−1) = ρ(−1 : (n−1)) =− 1
2n−1 and

(−1) : (n−1) : (−A) = ρ((−1) : (n−1) : (−A)) =− 1
2n−1 +

1
2n ρ(−A) = 1

2n−1 ρ(−1 : (−A)).

Suppose Left goes first. Suppose they move in the spider. Since Left is guaranteed a

move in the arm and the fact that optimal moves are higher, we have that Left may as well

play in the arm. We see that if Left plays in 1 : A then Right has a response in the

rightmost string to 0 by the induction hypothesis.

If Left plays in the strings, then they will play in the string of greatest height. Hence,

Left may as well play in the rightmost string. If Left can move in −A, then they will.

Then Right will respond in A and the resulting game is 0 i.e., a loss for Left. If Left

cannot move in −A, then −A must be all red. In this case, Left may as well move at L1.

We will show L1 is a losing first move for Left in the next step.
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Suppose Right moves first. Suppose Right moves in the spider. If they move in A, then

Left has a winning response in −A to 0. Right’s only other reasonable move in the spider

is at R1. We have

GR1 =
1

2n−1 (ρ((1+m) : A)+ρ(1 : (−A)))

> 0 (observing that making A all blue gives a lower bound on GR1)
(2.5)

This calculation also tells us GL1R1 = 1
2n−1 (ρ((1+m) : A)− 1

2n−2 < 0. Hence, L1 is a

losing first move for Left. Lastly, if Right moves in the strings, they will prefer to move in

the longest string. Whether they move in −A or delete the whole string; either way Left

has a winning response in 1 : A. We may conclude G = 0.

Next, we show B(k) =⇒ A(k+1). We consider three cases:

Case 1: tr = 0. Consider the game G in Figure 2.18, where the strings above ’see

description below’ represent k−1 strings of the form (−1) : (n−1).

Fig. 2.18: Case 1 for B(k) =⇒ A(k+1)

We noted previously that (−1) : (n−1) =− 1
2n−1 . We note that

Yi : (−1)− 1
2n−1 = Yi− 1

2n−1 − 1
2n−1 = Yi− 1

2n−2 . We also note

Yi : (−1)+Yj : (−1) = Yi +Yj− 1
2n−2 . Lastly, we note − 1

2n−2 = (−1) : (n−2). Therefore
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we can rewrite G as the game in Figure 2.19, where the strings above ’see description

below’ are k strings of the form (−1) : (n−2), i.e., k strings each worth − 1
2n−2 .

Fig. 2.19: A Game Equivalent to Figure 2.18

Suppose Left moves first. If Left moves in the spider, they may as well move at L1. We

have GL1 =− 1
2n−2 . In the next step, we will show that if Left instead moves in the strings,

then this is also a losing move.

Suppose Right moves first. We can rewrite G as the game in Figure 2.20, where the

strings above ’see description below’ are k strings of the form (−1) : (n−2), i.e., k

strings each worth − 1
2n−2 .

Fig. 2.20: A Game Equivalent to Figure 2.18

Using B(k), we have GR1 = 1
2n−1 ρ(m+1). Let GL2 be an option of Left moving highest in

the strings and GR2 be a right option of Right moving highest in the strings. Then
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GL2R1 =− 1
2n−2 +

1
2n−1 ρ(m+1)< 0 and GR2L1 = 1

2n−2 − 1
2n−2 = 0. This shows G is a

second player win, i.e., G = 0.

case 2: tb, tr 6= 0 and 0≤ t ≤ 2. Let G be the game in Figure 2.21.

Fig. 2.21: Case 2 for B(k) =⇒ A(k+1)

Then GL1R1 = GR1L1 = 0. Also, GL2R1 = 0. If t = 0 or t = 1, then GR2L1 = 0. Suppose

t = 2. Then GR2 results in a spider with t = 3. Observe, GR2L1 = 1
2n−1 . This shows G = 0.

case 3: tb, tr 6= 0 and t > 2. First, let S = X1/X2/. . ./Xk+1 be the spider Figure 2.22.

Fig. 2.22: Case 3 for B(k) =⇒ A(k+1)

We define Xi = Yi : εi where εi = 1 or −1 depending on the highest edge of that leg. Then

SL1 = Y1 + · · ·+Yk+1 +
t−2
2n−2 . Similarly, SR1 = Y1 + · · ·+Yk+1 +

t
2n−2 . For this case, we

would like to show the game in Figure 2.23 is equal to 0, where we let L2,R2 be optimal

moves for Left, resp. Right, in the strings.
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Fig. 2.23: The Game G in Case 3 for B(k) =⇒ A(k+1)

The spider is S and the strings above ’see description below’ represent t−1 strings of the

form (−1) : (n−2). In particular, the strings are each worth − 1
2n−2 . Hence,

GL1R2 = GR2L1 = 0 and GR1L2 = GL2R1 = 0. This shows G = 0.

2.6 Example

In this section, we apply the previous section to some examples. In particular, if we

are playing a spider (or sum of spiders), it is optimal to move highest in whichever

component we decide to move in. If we only care about the outcome of a spider (or sum

of spiders) we can use the previous section, assuming that the spiders are strings, arches,

or balanced spiders.

By Theorem 2.20, we have the equality in Figure 2.24. Adding up the strings, we find

the spider is equal to 7
8 +

3
8 −

5
8 −

1
8 +

1
8 +

1
8 = 6

8 = 3
4 . Therefore, the spider is a win for

Left whether they play first or second.
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Fig. 2.24: Decomposing a Spider Into a Sum of Legs and Bonuses

2.7 Conclusion

Our approach to solving balanced spiders was to first determine the optimal strategy,

and then prove the formula. It turned out that the optimal strategy was for players to

delete the highest edge available to them. In general, this does not hold when the spider is

unbalanced, i.e., when the legs have different height. Moreover, by our formula, it turned

out that a balanced spider could be rewritten as a sum of strings. This was ideal, because

strings are easy to evaluate. It is unclear unclear how to rewrite an unbalanced spider as a

sum of easy to evaluate games. Another loose end is finding a formula for balanced

spiders with an arm (by Colon Principle, the case of multiple arms reduces to the case of

exactly one arm). In this thesis, we solved a couple special cases but a general formula for

games of the form S\A remains unknown (Here, S is a balanced spider and A is an arm).
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3 REVERSE HACKENBUSH

The ruleset Reverse Hackenbush was introduced by vanRoode [4], where she also

gives a solution to strings. A solution to arches and trees were then posed as problems. In

this section, we give a solution to arches. A complete analysis of trees remains open. A

position in Reverse Hackenbush is a graph of blue and red edges which are all connected

to a vertex called the ground. We typically draw the ground as a horizontal black line for

aesthetic purposes. The game is played between two players: Left and Right. On a

player’s turn, they delete an edge of their respective color: Left is bLue and Right is Red.

Additionally, if an edge was in the component a player moved in, then that edge’s color is

reversed. (Blue edges reverse to red edges and vice versa). We emphasize that the only

edge’s whose color changes are ones in the component (which may now be disconnected)

that was played in. The first player unable to move loses.

Remark 3.1. In [4], playing a game with multiple components is not explicitly

mentioned. Therefore there is some ambiguity. For example, in the game of two blue

edges connected to the ground, does moving in one reverse the color of the other? If this

were so, then the position would be a second player win, i.e., 1+1 = 0. Therefore, we

explicitly state that a player reverses the color of edges only in the component that was

moved in.

As an example, we have the game G in Figure 3.1 and a sequence of moves on G

described in Figures 3.2 - 3.4. Indeed, Left has won this game since it will be shown that

GL1R1L2 = 1, i.e., a lone blue edge is worth 1 in Reverse Hackenbush.
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Fig. 3.1: A Sample Game G of Reverse Hackenbush

Fig. 3.2: An Option GL1

Fig. 3.3: An Option GL1R1

Fig. 3.4: An Option GL1R1L2

As another example, we consider the tree T in Figure 3.5 and a sequence of moves on T

described in Figures 3.6 - 3.8. Since Left has no options in T R1L1R2 , Right has won the

game. We note that Left playing L1 was a mistake on their part. If they deleted the lower

edge, they would have won.
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Fig. 3.5: A Sample Game T of Reverse Hackenbush

Fig. 3.6: An Option T R1

Fig. 3.7: An Option T R1L1

Fig. 3.8: An Option T R1L1R2

3.1 Strings

Definition 3.2. For any position in Reverse Hackenbush, we define a foot to be an edge

containing the ground as a vertex.

Definition 3.3. Let G be a position in Reverse Hackenbush. We define a blue segment to

be a nonempty, maximal path of blue edges and we define a red segment to be a
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nonempty, maximal path of red edges. We define sG to be the number of red or blue

segments that G contains. When clear by context, we’ll refer to sG by s.

Definition 3.4. Let G,H,K be games. We define {G||H|K} as a game whose Left option

is G and whose Right option is the game {H|K}.

Definition 3.5. For the remaining sections, the following games appear frequently:

Define A = {1||0,{0|−1}} and B = {1|0}. Note, A and B are in canonical form.

We note that the Left option of A is 1 and the Right options of A are {0|−1} and 0.

Examples of these game values are given in Figure 3.9.

Fig. 3.9: Examples of A and B

The following theorem is vanRoode’s solution to strings [4].

Theorem 3.6. (vanRoode’s Solution to Strings): Let S be a string with a blue foot. Then
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S =



0 s = 0

1 s = 1

−B s = 2

−A s≥ 3

We see that the value of a string is completely determined by the number of segments

it has, along with the color of its foot. Since we can omit dominated options, the

following theorem will be helpful in future calculations.

Theorem 3.7. We have B > A.

Proof. We play the difference game B−A. Note, −A = {0,B|−1}. It is sufficient to

show Left can win playing first, and Right cannot win playing first. If Left goes first, then

they can move on −A to the position B+B. Right plays and Left responds to a position

equal to 1. If Right goes first and moves on B, then move to the position 0−A. Left can

respond to 0+0 = 0. If Right moves on −A, then Left can respond on B to the position

1−1 = 0. The proves the inequality.

3.2 Arches

Similar to strings, the value of an arch is related to its segments. We will first solve

arches for s = 1,2,3, . . . ,7. Let eG denote the number of edges of a graph G. Unless

otherwise stated, WLOG, we assume all arches have at least one blue foot. We note that

arches are referred to as grounded loops in other sources such as [4].

Definition 3.8. Recall, we define the game ∗= {0|0}. This game is pronounced ’star’.

Definition 3.9. For a short game G, we define ±G = {G|−G}.

Remark 3.10. In some of the following proofs, our strategy will be to calculate options

in certain segments. We note that moving in a segment results in a sum of two strings.
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Since the value of a string is determined by the number of segments, and not on the

number of edges contained in a given segment, we may assume the number of edges in

each segment (except the one we moved in) is one.

In many of the proofs we will calculate certain options, then argue that any other

possible options must be dominated. We will also break our solution to arches into cases

based on the number of segments the arch contains. We saw that the solution to strings

breaks into four cases depending on the number of segments contained in the string.

Because of this, we will only have to consider finitely many cases in our solution to

arches.

Lemma 3.11. We may assume all segments have at most 3 edges. This is described in

Figure 3.10 below.

Fig. 3.10: Lemma 3.11.

where n ≥ 3.

Proof. In Figure 3.10, the two arches are equal as graphs except in the blue segments of 

length 3 and n, respectively. We will show that the above games have essentially (i.e., 

considering the options as game values) the same set of Left options and same set of 

Right options. Any option in a lined segment in one arch is equal to the deleting the 

corresponding edge in the other arch, since the arches have the same number of segments. 

Similarly, the set of options by moving in the red edges for both games are equal. 

  Lastly, we denote the game to the left in Figure 3.10 as G and the game to the right as 

H. Suppose Left plays in the blue segment in G. Call this move GL. If the edge deleted
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was adjacent to a red edge, then let HL be an option of Left deleting a blue edge in the

blue segment adjacent to a red edge. These options are described in Figure 3.11.

Fig. 3.11: GL and HL Are Adjacent to Red Edges

Then GL = HL. On the other hand, if they deleted the edge in the middle, then we have 

GL = HL where HL is any option of deleting a blue edge not adjacent to a red edge in H.

This situation is represented in Figure 3.12. The preceding statement and a similar 

argument shows that for every Left option HL there exists a Left option GL such that HL = 

GL. This proves the lemma.

Fig. 3.12: GL and HL Are Not Adjacent to Red Edges

Theorem 3.12. Let G be an arch with s = 1 (i.e., G contains only blue edges). Let eG be 

the number of edges in G. Then

G =


1 eG = 1

0 eG ≥ 2

Proof. Observe,

Case 1: eG = 1. We have G = {0|}= 1.

Case 2: eG = 2. We have G = {−1|}= 0.
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Case 3: eG = 3. We have G = {−2,−1|}= 0.

Theorem 3.13. Let G be an arch with s = 2. Let x be the blue leg and y be the red leg.

Then

G =


±1 ex = 1 = ey

{0,−B|−1} ex ≥ 2,ey = 1

∗ ex,ey ≥ 2

Proof. Let ex denote the number of edges in the blue segment and ey denote the number

of edges in the red segment. Observe,

Case 1: ex = 1 and ey = 1. Then G =±1.

Case 2: ex ≥ 2 and ey = 1. Then G = {0,{0|−1}|−1}= {0,−B|−1}.

Case 3: ex ≥ 2 and ey ≥ 2. Then G = {0,−B|0,B}= ∗. To see the last equality, we

play the difference game {0,−B|0,B}+∗. If the first player plays on ∗, the second can

play 0 in G (and vice versa). On the other hand, if the first player, say Left, plays to

−B+∗, then Right can move to −1+∗ which is strictly less than 0. Lastly, if Left were

to have played to 0+∗, then Right can play on ∗ and win the game. It follows that Left

cannot win playing first. By a symmetric argument, neither can Right.

Theorem 3.14. Let G be an arch with s = 3 (that is, two blue segments and one red

segment). Let ex be the minimum length of the two blue segments and let ey be the length

red segment. Then
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G =



{B|−2} ex = 1,ey = 1

0 ex = 1,ey > 1

{−1+B|−2} ex > 1,ey = 1

0 ex > 1,ey > 1

Proof. We will first calculate the Left options. There are two cases:

Case 1: Both feet have exactly one edge. Let G be the game in Figure 3.13.

Fig. 3.13: Both Feet Have Exactly One Edge

Then GL1 = B. In this case, G = {B| . . .}.

Case 2: At least one foot has more than one edge. Let G be the game in Figure 3.14.

Fig. 3.14: At Least One Foot Has More Than One Edge
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Note that GL2 may or may not exist depending on the number of edges in the segments,

but we will see if it does exist then it is dominated. We have GL1 = A,GL2 =−1+A, and

GL3 =−1+B. We see GL2 < GL1 < GL3 . In this case, G = {−1+B| . . .}.

We can conclude if one of the blue segments has length 1, then Left’s only

worthwhile option is equal to B. Otherwise, each blue segment has length ≥ 2 and Left’s

only worthwhile option is to −1+B.

Next, we calculate the Right options. There are two cases:

Case 1: There is exactly one red edge. Then GR1 =−2.

Case 2: There is more than one red edge. Let G be the game in Figure 3.15.

Fig. 3.15: More Than One Red Edge

Note, GR2 may or may not exist depending on the number of edges in the segments, but

we will see if it does exist then it is dominated. We have GR1 =−1+B = GR3 and

GR2 = B+B = 1. In this case, G = {. . . |−1+B}. Going through cases and putting

games into canonical forms gives the theorem.

Lemma 3.15. Suppose G is an arch with s≥ 4. Then we may assume the feet segments

contain exactly one edge.

Proof. Let x represent a foot. WLOG, suppose the foot is blue and x is the segment

containing this foot. Let GL be the option where Left deletes the lowest edge in x, and let

GL′ be any other option of Left deleting an edge in x. By Theorem 3.6,

GL′ =−1+GL < GL. We may ignore dominated options. It follows that G = G′ where G′
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is the arch G where x is replaced with exactly one blue edge. A symmetric argument

works if x had been a red foot.

Theorem 3.16. Let G be an arch with s = 4. Let x be the blue segment that does not

contain a foot and y be the red segment that does not contain a foot. Then

G =



±{2|1} ex = 1 = ey

{{2|1}|−A−1} ex = 1,ey > 1

{A+1|{−1|−2}} ex > 1,ey = 1

±(A+1) ex,ey > 1

Proof. By the lemma, we may assume the feet have exactly one edge. As before, we will

calculate the options, starting with Left’s. Note that since we are calculating Left options,

we may assume all red segments have only one red edge in them.

If Left deletes the foot, we have GL1 =−A. We will see that GL1 is dominated by

some other option. Suppose Left plays on x. Consider two cases:

Case 1: ex = 1. Let G be the game in Figure 3.16.

Fig. 3.16: The Segment x Has Length 1

If Left plays in this segment, we have GL2 = B+1 = {2|1}. Since −A < {2|1}, we have

that Left’s only worthwhile move is {2|1}.

Case 2: ex = 2. Let G be the game in Figure 3.17.

53



Fig. 3.17: The Segment x Has Length 2

If Left plays in the higher edge, we have GL2 = 0. If Left plays in the lower edge, we

have GL3 = 1+A. Now, GL3 dominates GL2 and GL1 which shows Left’s only worthwhile

move is 1+A.

Case 3: ex = 3. Let G be the game in Figure 3.18.

Fig. 3.18: The Segment x Has Length 3

We have GL2 = 0. If Left plays in the middle edge, we have GL3 =−A−B. If Left plays

in the lowest edge, we have GL4 = 1+A. Now, GL4 dominates GL3,GL2 , and GL1 . In this

case, Left’s only worthwhile move is 1+A.

A symmetric argument proves the claim about Right’s options. The theorem

follows.

Definition 3.17. Let S be a segment in an arch G. We define the segment height of S as

the minimal number of segments (inclusive) from S to the ground.
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Theorem 3.18. Let G be an arch with s = 5. WLOG, assume the feet are blue and let x

be the blue segment of greatest height (the unique non-foot blue segment). Then

G =


{1|−1+A} ex = 1

{A,B+A|−1+A} ex ≥ 2

Proof. As before, we will calculate the options. Let G be the game in Figure 3.19.

Fig. 3.19: A 5 Segment Arch Whose Right Options Are Emphasized

Calculating the Right options, we have GR1 =−1+A,GR2 = B+A = GR3 where GR1

necessarily exists and GR2,GR3 exist depending on the number of edges in the segments.

Note, GR1 < GR2 = GR3 . We may conclude G = {. . . |−1+A}. Next, we calculate the

Left options.

Case 1: ex = 1. Let G be the game in Figure 3.20.

Fig. 3.20: The Segment x Has Length 1

Calculating the Left options, we have GL1 = A,GL2 = 1. Note, A < 1. We may conclude

G = {1|−1+A}.

Case 2: ex = 2. Let G be the game in Figure 3.21.
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Fig. 3.21: The Segment x Has Length 2

We have GL1 = A,GL2 = B+A,GL3 = A+B. It follows that G = {A,A+B|−1+A}.

Case 3: ex = 3. Let G be the game in Figure 3.22.

Fig. 3.22: The Segment x Has Length 3

We have GL1 = A,GL2 = B+A = GL4,GL3 = A+A. Note, A+B > A+A. It follows that

G = {A,A+B|−1+A}.

Theorem 3.19. Let G be an arch with s = 6. Then G =±(1+A).

Proof. We will calculate the Left options and by symmetry this also calculates the Right

options. Let G be the game in Figure 3.23.

Fig. 3.23: A 6 Segment Arch Whose Left Options Are Emphasized
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Note that GL3,GL4,GL5,GL6 may or may not exist depending on the number of edges in

the segments, but we’ll see they are dominated by GL7 which necessarily exists. We have

GL1 =−A

GL2 = B−A

GL3 = 0

GL4 = 0

GL5 = A−B

GL6 = A−B

GL7 = A+1

Ignoring dominated options, we have G = {A+1| . . .}. Using a symmetric argument

to determine GR, we have G =±(A+1).

Theorem 3.20. Let G be an arch with s = 7. Then G = {A,A+B|−1+A}.

Proof. We first calculate the Left options. Let G be the game in Figure 3.24.

Fig. 3.24: A 7 Segment Arch Whose Left Options Are Emphasized

Note that GL3 and GL4 may or may not exist depending on the number of edges in the

segments, but we will see they are dominated. We have
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GL1 = A

GL2 = B+A

GL3 = A+A

GL4 = A+A

Since A+A < B+A, we have that GL3 and GL4 are dominated by GL2 . We can

conclude G = {A,A+B| . . .}. Next, we calculate the Right options. Let G be the game in

Figure 3.25.

Fig. 3.25: A 7 Segment Arch Whose Right Options Are Emphasized

Note if the segment containing R4 contained another edge R, we’d have GR4 = GR. So we

may assume that the segment containing R4 contains no other edges. We also note that

GR2 and GR3 may or may not exist depending on the number of edges in the segments,

but we’ll show these options are dominated. We have
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GR1 =−1+A

GR2 = B+A

GR3 = B+A

GR4 = A+A

We see GR1 dominates GR2,GR3,GR4 . We may conclude G = {A,A+B|−1+A}.

Lemma 3.21. WLOG, assume G is an arch with at least one blue foot. If e is an edge in

a segment with segment height ≥ 4, then

G′ =


A+A G has two blue foot

0 G has only one blue foot

where G′ is the result of a player deleting edge e.

Proof. By assumption, e is an edge in a segment with segment height ≥ 4. Hence, G′ is

the sum of two strings, each of segment height ≥ 3. Write this sum as G′ = T1 +T2.

Therefore, each string is equal to A or −A. By assumption, G has at least one blue foot.

So T1 or T2 has a red foot. Hence, T1 and T2 are both equal to A, or one of them equals A

and the other −A. This proves the lemma.

Theorem 3.22. Let G be an arch with s≥ 8. Then

G =


±(1+A) s is even

{A,A+B|−1+A} s is odd

Proof. We consider two cases.
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Case 1: s is even. Then G has a blue foot and a red foot. We calculate the Left options

first. We consider the options existing in segments of height 1,2,3, and 4. The possible

options in a segment of height 1 are equal to −1−A or −A. The possible options in

segment height 2 are equal to 1+A or −B+A. Note that 1+A is guaranteed to exist, and

we will show it dominates all other options. The possible options in segment height 3 are

equal to B−A or 0. Lastly, the previous lemma shows an option in segment height 4 or

higher is equal to 0. Hence, the possible options for Left are

−1−A,−A,1+A,−B+A,B−A and 0. Since 1+A dominates all other options, and is

guaranteed to exist (it is the option of deleting the edge of lowest height in the segment of

height 2), we may ignore all other Left options.

By a symmetric argument to calculate the Right options, we have G =±(1+A).

Case 2: s is odd. Then G has two blue feet. We calculate the Left options first. We

consider options in segments of height 1,3, and 5. The options in segments of height 1

are equal to −1+A or A. The options in segments of height 3 are equal to B+A or A+A.

The options in segment 5 are all equal to A+A. The option equal to A exists and

corresponds to deleting an edge containing the ground as a vertex. The option equal to

B+A exists and corresponds to deleting the lowest edge in a segment of height 3. We see

that A and B+A dominate −1+A,A+A. Moreover, A and B+A are confused with each

other. Hence, we may ignore all Left options besides A and B+A.

Next, we calculate the Right options. We consider options in segments of height 2 and

4. The options in segments of height 2 are equal to −1+A or B+A. The options in

segments of height 4 equal to A+A. Note that an option equal to −1+A exists and

corresponds to deleting the lowest edge in a segment of height 2. Moreover, −1+A

dominates B+A and A+A. Hence, we may ignore all Right options besides −1+A. We

can conclude G = {A,B+A|−1+A}.
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3.3 Colon Principle

In this section we show that the Colon Principle [1] does not hold in Reverse Blue

Red Hackenbush.

Definition 3.23. We define the trunk of a tree T as the string of edges from the ground up

to the first vertex of degree ≥ 3. If no vertex of degree ≥ 3 exists, then T is a string and

we say T is its own trunk.

Let G be the game in Figure 3.26.

Fig. 3.26: Counter Example to the Colon Principle in Reverse Hackenbush

Then G = {0,B|−1}. If the Colon Principle did hold, then we would have G = 1. But G

is not even positive since Right has a winning move as the first player. This shows the

usual Colon Principle in the usual Blue Red Hackenbush does not hold in the Reverse

variant. This is because the branches play differently on the trunk than they do on the

ground. More specifically, when playing in the branches on the trunk, any move in a

branch will reverse the colors in the other branches. On the other hand, playing the

branches on the ground, any move in one branch does not reverse the colors in the other

branches. Branches are independent of each other on the ground, and are dependent on

each other on a trunk.
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Theorem 3.24. (A Weaker Colon Principle): Let S be a string. For a game H, define the

reverse ordinal sum S : H = {SL,(−S) : (HL)|SR,(−S) : (HR)}. Let G be a graph of blue

and red edges. Then S : (G+G) = S.

Proof. We play the difference game S : (G+G)+(−S). If the first player moves in S or

−S, then the second player has a clear TDTD response to 0. Suppose Left goes first and

that they move in one of the copies of G. Then Right can TDTD in the other copy of G.

By induction on the size of G, we have (S : (G+G))LR +(−S) = 0. By a symmetric

argument, if Right goes first and plays on one of the copies of G, then Left can force a

win. This shows that S : (G+G)+(−S) is a second player win, i.e., equal to 0.

3.4 Conclusion

We have seen that arches and strings in Reverse Blue Red Hackenbush have a nice

contrast to the same positions in the usual ruleset. More specifically, positions can take on

values that are not numbers in Reverse Blue Red Hackenbush. For arches and strings, we

have seen these positions can only take on finitely many values.
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