
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Theses Master's Theses and Graduate Research

Fall 2021

Faster Depth Estimation for Situational Awareness on Urban Faster Depth Estimation for Situational Awareness on Urban

Streets Streets

Sanjana Srinivas
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_theses

Recommended Citation Recommended Citation
Srinivas, Sanjana, "Faster Depth Estimation for Situational Awareness on Urban Streets" (2021). Master's
Theses. 5246.
DOI: https://doi.org/10.31979/etd.saph-248v
https://scholarworks.sjsu.edu/etd_theses/5246

This Thesis is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU
ScholarWorks. It has been accepted for inclusion in Master's Theses by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_theses
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_theses?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F5246&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses/5246?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F5246&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

FASTER DEPTH ESTIMATION FOR SITUATIONAL AWARENESS ON URBAN
STREETS

A Thesis

Presented to

The Faculty of the Department of Computer Engineering

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Sanjana Srinivas

December 2021

© 2021

Sanjana Srinivas

ALL RIGHTS RESERVED

The Designated Thesis Committee Approves the Thesis Titled

FASTER DEPTH ESTIMATION FOR SITUATIONAL AWARENESS ON URBAN
STREETS

by

Sanjana Srinivas

APPROVED FOR THE DEPARTMENT OF COMPUTER ENGINEERING

SAN JOSÉ STATE UNIVERSITY

December 2021

Mahima Agumbe Suresh, Ph.D. Department of Computer Engineering

Magdalini Eirinaki, Ph.D. Department of Computer Engineering

Gheorghi Guzun, Ph.D. Department of Computer Engineering

ABSTRACT

FASTER DEPTH ESTIMATION FOR SITUATIONAL AWARENESS ON URBAN
STREETS

by Sanjana Srinivas

Depth estimation algorithms are useful components of computer vision systems to

assess video streams on urban streets. They can provide important information about the

street space and improve situational awareness for humans. Deep learning algorithms for

depth estimation are slow in providing on-time street evaluation for the users. To provide

situational awareness to humans, the inference time needs to be small, so that results are

fresh and meaningful. This paper explores approaches like switching to efficient

convolutional neural network, quantization and pruning to improve inference time with a

little compromise on the performance. We explore the impact of each of these methods

independently and introduce a hybrid method. We evaluate the execution time, resource

utilization, and performance of various state-of-the-art depth estimation algorithms. We

compare these with our approach of using the three optimization techniques both

independently and in hybrid. We observe that using these optimization techniques can

improve the inference time dramatically, with a 57.3% speedup in inference time and a

94.5% reduction in memory utilization while improving the object level performance

(RMSE) by 3.8%.

ACKNOWLEDGMENTS

I would like to thank my advisor - Dr. Mahima Agumbe Suresh, SJSU Department of

Computer Engineering, for giving me the opportunity to work on this research. Her

continuous support and guidance carried me through all stages of the study,

experimentation, and writing of this work.

I would also extend warm regards to my committee members - Dr. Magdalini Erinaki

and Dr. Gheorghi Guzun, whose knowledge and perspective were instrumental in the

completion of the thesis.

I am extremely grateful to Cheryl R. Cowan, SJSU Graduate Studies Associate, for

assisting me with the guidelines and submissions.

Last, but not least, I would like to thank my family. Without their support, I would

have never been able to complete this thesis or pursue my dreams.

v

TABLE OF CONTENTS

List of Tables . vii

List of Figures . viii

1 Introduction . 1
1.1 Motivating Application . 2

2 Related Works . 5
2.1 Self-Supervised Monocular Depth Estimation . 5
2.2 Small and Efficient Convolutional Neural Networks . 6
2.3 Neural Network Introspection . 6
2.4 Quantizing Neural Networks . 8

3 Edge Performance Optimization on Deep Learning for Depth Estimation 10
3.1 Network Architecture for Baseline Training . 10

3.1.1 Using Efficient Convolutional Neural Network for Encoder 12
3.2 Channel Pruning with Sparsity . 14

3.2.1 Channel Selection . 15
3.2.2 Network Reconstruction . 16

3.3 8-Bit Static Quantization . 17

4 Experiments . 19
4.1 Datasets and Training . 19
4.2 Implementation Details . 19
4.3 KITTI Results . 20
4.4 Cityscapes Results . 21
4.5 Ablation Study . 22

5 Discussions . 27

6 Proposed Metrics . 31

7 Future Work . 35

8 Conclusion . 36

Literature Cited . 37

vi

vii

LIST OF TABLES

Table 1. Quantitative Results - Performance. Loss metric (Abs Rel, Sq Rel,
RMSE, RMSE log) - lower is better and accuracy metrics (δ) - higher is
better. 21

Table 2. Quantitative Results - Resource utilization . 21

Table 3. Cityscapes Results - Performance. Loss metric (Abs Rel, Sq Rel,
RMSE, RMSE log) - lower is better and accuracy metrics (δ) - higher is
better. Q - Quantization . 22

Table 4. Cityscapes Results - Resource utilization. Q - Quantization, P - Pruning 23

Table 5. Ablation Study - Performance. Results of different experiments on
Monodepth2 [6] (ResNet18) and depth network with MobileNetv2 are
recorded. Pruning rate is an hyperparameter used to prune channels of
convolutional layers at stage*. Loss metric (Abs Rel, Sq Rel, RMSE,
RMSE log) - lower is better and accuracy metrics (δ) - higher is better.
CP - Conservative Pruning, AP - Aggressive Pruning . 24

Table 6. Ablation Study - Computational Footprint. CP - Conservative Pruning,
AP - Aggressive Pruning . 25

Table 7. Object Level Performance Performance measured when minimum
value of the grid is chosen. Loss metric (Abs Rel, Sq Rel, RMSE,
RMSE log) - lower is better and accuracy metrics (δ) - higher is better.. . 33

Table 8. Object Level Performance Performance measured when maximum
value of the grid is chosen. Loss metric (Abs Rel, Sq Rel, RMSE, RMSE
log) - lower is better and accuracy metrics (δ) - higher is better. 33

Table 9. Object Level Performance Performance measured when mean value of
the grid is chosen. Loss metric (Abs Rel, Sq Rel, RMSE, RMSE log) -
lower is better and accuracy metrics (δ) - higher is better. 34

viii

LIST OF FIGURES

Fig. 1. Network Architecture. [top figure] Monodepth2 model with ResNet18
encoder. [bottom figure] Depth network with MobileNetv2 as the encoder. 12

Fig. 2. Expansion of Convolutional Blocks. [left figure] Expansion of residual
block in ResNet18. [right figure] Expansion of residual inverted bottleneck
block in MobileNetv2. 13

Fig. 3. Evolution of input in the residual inverted bottleneck block of MobileNetv2. 13

Fig. 4. Network Architecture - Before and After Pruning. [top figure] Base-
line network architecture before pruning. [bottom figure] The pruned
model achieved by removing redundant channels in convolution layers.
The pruned model weights are then quantized to 8-bit integers to further
reduce memory footprint and inference time. 14

Fig. 5. Channel Pruning. A convolution layer consists of prescribed channels.
Some of these channels can be redundant (as shaded on red). Pruning is
the process of identifying these redundant channels and removing them. . . 16

Fig. 6. Qualitative results on KITTI Raw test set. From the figures above we
can confirm that our model has performed almost equivalently as the
baseline architecture Monodepth2 [6]. 22

Fig. 7. Qualitative results on CityScapes test set. Our model has performed
almost equivalently as the baseline architecture Monodepth2 [6], thus
confirming that generalization was achieved. 23

Fig. 8. Experiments on CIFAR10 dataset. Figure compares the accuracy, num-
ber of parameters, inference time and memory utilization of various neural
network architectures on CIFAR10 dataset.CP refers to conservative
pruning and AP refers to aggressive pruning. PQ is conservative pruning
+ quantization and APQ is aggressive pruning + quantization. 28

Fig. 9. Experiments on MNIST dataset. Figure compares the accuracy, number
of parameters, inference time and memory utilization of various neural
network architectures on MNIST dataset. 29

Fig. 10. Experiments on SVHN dataset. Figure compares the accuracy, number
of parameters, inference time and memory utilization of various neural
network architectures on SVHN dataset. 29

ix

Fig. 11. Pixel-level performance evaluation. A pixel in predicted depth map is
compared with the corresponding pixel in the ground-truth depth map. . . . 32

Fig. 12. Coarser grained performance evaluation. Here images are divided into
grids (in our experiments grid size used is 16x16 pixels). The minimum
value of a grid in predicted depth map is compared with the minimum
value of the corresponding grid in the ground-truth depth map. 32

1 INTRODUCTION

In recent years, urban streets have become increasingly more multi-modal with the

introduction of micro-mobility alternatives such as electric scooters and skateboards, in

addition to the bikes, cars, and pedestrians that have occupied the street space. An

increasing number of accidents are attributed to this disruptive change [1]. With

advancements in artificial intelligence and a multitude of smart devices on everyday

objects and the advent of edge computing, there is a unique opportunity to improve

situational awareness for humans using the street spaces.

One of the key steps to providing situational awareness is to be able to assess the

scene in which a human is present, often captured by a camera. Computer vision

algorithms, especially depth estimation, is a critical component for this purpose. Depth

estimation provides important information about the distance between a human and the

surrounding objects. Most state-of-the-art results for depth estimation are based on fully

supervised learning [2], [3], which makes use of ground truth depth labels. However, it is

tedious to acquire a massive amount of accurate ground truth depth labels. Recently,

competing results are available, where self-supervised techniques are used for stereo

training from multiple cameras [4], [5].

In this research, we focus on monocular depth training, since it is most suitable for

our application. Smart devices that can be used by humans for real-time inference need to

have a small form factor, and it is preferable to have as few components as possible

on-board. Monocular depth training requires only a single camera as opposed to stereo

training. With this constraint, depth estimation using a single image sequence is

considered to be an ill-posed problem as many points in 3D converge to the same point in

2D. Current depth estimation techniques handle this problem but have a very high

computational overhead, which makes them unsuitable out-of-the-box for real-time

applications [6]–[10]. To execute these algorithms at the edge in real-time, there is a need

1

to introduce performance optimizers that can provide slightly less accurate inference

within a deadline on these resource-constrained devices.

Recently, efficient convolutional neural networks have proven to provide competing

performance, that is comparable with complex networks like ResNet while ensuring low

inference time and memory utilization. Additionally, quantization as a technique to

reduce memory and computation footprint are being studied [11]–[14]. Another technique,

called pruning, leverages an understanding of the inner workings of neural networks to

eliminate redundant nodes [15]–[21]. For our application, these techniques can be used to

reduce the inference time and make the complex monocular depth estimation techniques

suitable for real-time computation at the edge.

1.1 Motivating Application

A report by Consumer Product Safety Commission states that between 2017-2019, it

is estimated that e-Scooter related accidents have resulted in 50,000 emergency

department visits and 27 fatalities [1]. These numbers are on the rise year over year. A

vast majority of the accidents are attributed to riders lacking awareness of their

surroundings and failing to anticipate collisions. This raises the need for better e-Scooter

safety measures and regulations. Smart helmets can be used as a safety precaution by

e-Scooter riders to avoid casualties. They can help in detecting and warning the rider

about the approaching obstacles in real-time. Depth information is critical to understand

the environment and detect any obstacle. A smart helmet, embedded with a simple safety

assessment algorithm that makes use of the depth map, can potentially avoid e-Scooter

accidents. The pixels within a specific threshold of the depth map are identified and

categorized as dangerous obstacles.

The big-picture vision of this research is to develop a smart helmet that accurately

identifies dangerous situations such as obstacles and intersections, and warns the users in

2

real-time, i.e., without them experiencing any time lag. We envision that the

computational needs of such an application can be fulfilled completely at the edge.

The nature of the applications changes the performance demands. Since the result of

depth estimation is consumed by a human rather than a machine/algorithm, we can make

a few compromises on the performance of the depth estimation. Specifically, we do not

require high accuracy at the pixel level. On the other hand, we require high accuracy at

the object level. The application also demands that results of depth estimation are “fresh”

for the consumption of the rider. Older results can be more harmful than helpful. But, it is

intractable to quantify by a deadline as the environment - rider, scene, and camera - are

dynamic. The specific deadline for such a real-time system is an orthogonal area of

research and is out of the scope of this research. In this work, we aim to make use of

different optimization techniques to bring down the inference time so that the predictions

are generated in real-time. Our goal is to study if depth estimation algorithms can achieve

minimal inference time and computational costs on an edge device without losing

accuracy at the object level.

The key contributions of this research are:

• We present a deep learning technique that uses a combination of quantization and

pruning on existing monocular depth estimation algorithms.

• We modify the existing baseline Monodepth2 [6] architecture with an edge-friendly,

efficient convolutional neural network.

• We evaluate the inference time, memory footprint, and performance of the depth

architecture with an efficient network, quantization, pruning, and a combination of

these approaches

• We evaluate the hypothesis that the combination of pruning and quantization

improves inference time without losing the performance of the deep learning

network.

3

• We propose a metric to evaluate depth estimation that is coarse-grained in contrast to

the pixel level. This is useful in applications that have a human in the loop.

The remainder of this thesis is structured as follows. First, Chapter 2 provides an

insight into the previous work on depth estimation, efficient convolutional networks,

quantization, and neural network introspection. Chapter 3 elaborates on the methodology,

including the loss functions for monocular depth estimation, the network architecture, and

techniques to improve inference time at the edge. Chapter 4 consolidates the experimental

results and their comparison with the previous state-of-the-art methods. It also includes

the step-by-step experiment setup, their results, and an overview of the system

requirements and hyperparameters used. Chapter 5 provides additional experimental

results that support our research. The proposed object-level evaluation metric is discussed

in Chapter 6. Finally, Chapter 7 contains the future work and Chapter 8 concludes with an

overview of the outcome.

4

2 RELATED WORKS

Depth estimation is crucial to understand the 3D world for navigation assistance in

computer vision and robotics systems. Several methods to estimate depth have been

adopted over the years. Initially, active sensors like LiDAR and RADAR were used on the

navigating agent. But due to its limited range, increased noise, power consumption, and

cost, a deep convolutional neural network with passive sensors like a camera became

popular. Deep convolutional neural network methods can be mainly categorized into 3

major types - 1) fully supervised learning, 2) self-supervised stereo learning and 3)

self-supervised monocular learning. Our application demands the use of self-supervised

monocular learning because of resource constraints and the ease with which data can be

collected.

2.1 Self-Supervised Monocular Depth Estimation

Depth estimation using monocular images is considered an ill-posed problem as more

than one point in 3D converges to the same point in 2D. Therefore, the state-of-the-art

results on depth estimation are mostly from fully supervised [2], [3] or self-supervised

stereo methods [4], [5]. However, monocular images are easier to acquire when compared

to stereo images or depth ground truth data. One of the initial monocular depth estimation

approaches [8], proposes a dual network to estimate the depth and pose independently

using consecutive temporal frames. This enables training with only monocular video and

produces competing performance. Using the dual network architecture, recent works

in [6] and [7] have closed the performance gap between monocular depth estimation and

fully supervised or self-supervised stereo methods. Godard et al. [6] use superior loss

functions to handle occlusions and mask training pixels that violate the camera motion

assumption. This is extended by [7] to obtain a sharper depth map. This research uses

self-attention and discrete disparity volume decoder to analyze a broader context and

achieve improved performance. The state-of-the-art architectures proposed for monocular

5

depth estimation are computationally complex. Smart helmets used by e-Scooter riders

are edge devices. These edge devices have computational restrictions and the application

demands lesser inference time. Therefore, deploying the depth estimation architecture on

such devices without deteriorating the performance is the challenge.

2.2 Small and Efficient Convolutional Neural Networks

With edge computing becoming increasingly essential, we are observing a gradual

shift from accuracy-driven neural networks like ResNet [22], Inception [23] and

DenseNet [24] to solutions that offer a balance between performance and computational

requirements. Techniques like Neural Architecture Search [25] and RegNet Design

Spaces [26] are automated machine learning techniques that explore the design spaces of

the artificial neural network to achieve exceptional results and inference latency. However,

these techniques require vast computing resources. Therefore, in this research, we incline

towards small and efficient manual-designed convolution neural networks.

SqueezeNet [27], MobileNet [28], [29], ShuffleNet [30] and EfficientNet [31] are some of

the examples of such networks.

MobileNetv1 [28] makes use of depth-wise separable convolutions in place of

standard convolutions thereby reducing the number of computations. Whereas

ShuffleNet [30] makes use of point-wise convolutions in a group to achieve comparatively

better results than MobileNetv1. MobileNetv2 [29] achieves state-of-the-art results by

surpassing the compression rates of MobileNetv1 and ShuffleNet with the inclusion of

inverted residual linear bottleneck along with depth-wise separable convolutions. It is

specifically tailored for resource constraint environments and thus is suitable for our use

case.

2.3 Neural Network Introspection

A neural network is widely known as a black-box model. Neural network

introspection is a strategy that helps in understanding this black box. In depth estimation

6

networks, understanding the properties of the image recognized by each hidden node will

help decode the information of the image - from pixel to depth map. With this knowledge,

a significant piece of information about the network can be revealed – the redundant

nodes. Fully connected networks such as the depth network are known to be

over-parameterized (i.e multiple neurons encode nearly the same information) in most of

the state-of-the-art algorithms and therefore consist of several redundant nodes. Pruning is

an introspection technique that identified the redundant nodes and eliminates redundant

weights or layers. There are two types of pruning – unstructured pruning and structured

pruning.

Unstructured pruning or weight pruning is a procedure through which individual

redundant parameters within a layer are set to zero or pruned. Han et al. [16] proposes to

reduce the energy required to run large neural networks by learning to identify

unimportant connections in the network using L1 regularization and iterative pruning. The

speedup at inference is achieved by introducing sparsity with the aid of sparse matrix

operation libraries and/or hardware. As opposed to [16], [17] achieves sparsity during the

process of pruning with the use of an additional gate matrix. Both these methods and

many weight pruning techniques have overhead costs involved to attain sparsity. Although

pruning of weights reduces a significant number of parameters from the fully connected

layers, it fails to adequately reduce the computation costs and run-time memory. This is

because most of these resources are consumed by the activation maps which are still

dense, as opposed to the weights.

The second pruning technique is structured pruning or channel pruning where the

entire columns of weights of a redundant channel are pruned. [19] achieves sparsity while

preserving significant performance by randomly deactivating input-output channel-wise

connections in a convolution layer. [32] achieves sparse channel pruning using L1

regularization to identify redundant weights at inference. Compared to these works, [18]

7

proposes to achieve model compression by pruning the channels of a trained CNN using

L1 regularization and fine-tuning or retraining to regain the lost accuracy.

Advantages of channel pruning include ease of implementation when compared to

weight pruning. Unlike weight pruning, channel pruning does not require the support of

special software or hardware libraries to speed up inference time and memory utilization.

Therefore, to reduce the computational footprint of our depth network we propose a

structured pruning - channel pruning technique for our use case.

As suggested in many pruning literature [18], [19], we adopt a three-step neural

network channel pruning technique. The three steps include 1) Training the baseline

network to learn the importance of weights in different channels, 2) Pruning to remove

redundant channels, and 3) Fine-tuning to recover the accuracy lost during the process of

pruning.

2.4 Quantizing Neural Networks

Quantization refers to the technique of storing floating-point values as lower bit-width

values. It is one of the commonly used approaches to reduce the computational footprint

of a neural network. Quantization can be classified as dynamic and static quantization or

post-training quantization (PTQ) and quantization aware training (QAT).

In dynamic quantization, weights are quantized ahead of time, while the activations

are dynamically quantized during inference, making this the simplest form of quantization

to use. This is utilized in instances when loading weights from memory rather than

computing matrix multiplications take up the majority of the model execution time (in the

case of LSTM and transformer type models). Whereas in the static quantization model,

weights and activation are quantified before inference. Theoretically, static quantization is

said to be faster than dynamic quantization since unlike dynamic quantization the scales

and zero points of activation in static quantization are determined before inference thereby

reducing the computation overhead while inferencing. However, the model size and

8

memory consumption of the two remains to be almost the same [33]. Considering the

speed, we prefer static quantization over dynamic quantization.

Post-training quantization [13], [33], [34] is a technique wherein we start with a

trained model, and pre-process this model wherever possible, by merging the batch

normalization layers into preceding layers. Finally, the model undergoes static or dynamic

quantization. In static PTQ, to establish the best quantization parameters for activations,

the process is calibrated with a representative dataset. Quantization aware training [33],

[35] is the process where the model is quantized and further fine-tuned to recover loss of

information - the floating-point values before quantization and after de-quantization are

not completely recoverable. Although QAT achieves good performance, the process of

quantization and fine-tuning itself is time-consuming.

Lower bit-width values achieved through quantization can be 16, 8, 4, and even

2-bit-widths. Layer-by-layer quantization proposed in [12] quantifies floating-point

weights and output data at each layer of the neural network to 8-bit values. The resultant

compression ratio after quantization is approximately 7% of the original VGG like

network. [13] propose a 4-bit quantization method and its resulting compression ratio on

VGG is around 12%. The performance is retained by solving for the quantization values

using the minimum mean squared error method. Whereas, [35], [36] achieves binary or

2-bit quantization to drastically reduce the computational requirement. However, for very

low-bit quantization, hardware support (Raspberry Pi supports 8, 16, and 32 bits) is

restricted. Therefore, we consider 8-bit post-training static quantization to be a good

compromise considering precision, ease of implementation, compression, and hardware

support.

9

3 EDGE PERFORMANCE OPTIMIZATION ON DEEP LEARNING FOR

DEPTH ESTIMATION

In this section, we present our depth prediction network, which generates a depth map

from single color input. We first go over the essential concepts in Monodepth2 [6], a

self-supervised training method for monocular depth estimation, and then we discuss the

optimization strategies for efficient edge deployment.

3.1 Network Architecture for Baseline Training

Monodepth2 [6] is one of the state-of-the-art architectures for estimating depth in an

unsupervised manner using monocular images. The baseline depth training is adopted

from [6]. In Monodepth2, a depth network is used to predict the depth map Dt of image It .

It is comprised of an encoder-decoder architecture. An RGB image It of height H and

width W having 3 channels, is fed as input to ResNet18 [22], which learns the features of

the input image to generate an output Xt = resnetθ (It) having 512 channels. The last fully

connected layer of ResNet18 is discarded to retain the higher resolution Xt feature maps

with 512 channels. This is then traversed through the decoder which upsamples Xt by

making use of the intermediate feature maps in the encoder to generate a depth map Dt .

There are two loss functions used to train the model are - photometric reprojection

loss and edge-aware smoothness loss [6].

Lp = min
t ′

pe(It , It ′→t) (1)

pe(It , It ′→t) =
α

2
(1−SSIM(It , It ′→t)+(1+α)||It , It ′→t ||1 (2)

where α = 0.85.

The photometric reprojection loss is calculated with the aid of a pose network. A pose

network is used to predict the transformation matrix Tt→t ′ having 6 degrees of freedom

10

using image frames It and It ′ ∈ {It−1, It+1} where It ′ are the temporally adjacent frames to

It . Images It ′ are transformed to It using the transformation matrix, resulting in It ′→t . The

photo-metric re-projection loss (Equation 1) is given by the minimum re-projection error

pe (L1 distance and Self-Similarity (SSIM) (Equation 2)) in the pixel space between It

and It ′→t .

Ls = |∂xd∗t |e|∂xIt |+ |∂yd∗t |e−|∂yIt | (3)

where d∗t = dt/dt is the mean normalized inverse depth [37] used to prevent shrinking of

estimated depth. Smoothness loss Ls takes into account the edges present in the frame and

also helps to predict smooth disparity estimates in local neighborhoods. It penalizes

drastic depth changes in the flat regions. This is given by Equation 3.

µ = [min
t ′

pe(It , It ′→t)< min
t ′

pe(It , It ′)] (4)

where [.] is the Iverson bracket.

Following [6] auto-masking technique is used to preserve the static scene moving

camera assumption in self-supervised monocular trained depth estimation methods. The

binary mask µ ∈ {0,1} (Equation 4) will help in masking the loss Lp to include only the

pixels where the re-projection error of It ′→t is lower than the error of It ′ .

L = µLp +λLs (5)

The total loss is equivalent to the sum of the masked photo-metric re-projection loss

and weighted edge-aware smoothness loss (Equation 5).

This computationally heavy network is optimized to efficiently deploy on an edge

device by leveraging an efficient convolutional neural network - MobileNetv2 in place of

the ResNet18 encoder.

11

3.1.1 Using Efficient Convolutional Neural Network for Encoder

Although the ResNet18 encoder helps in achieving state-of-the-art performance, the

memory usage and inference time due to this encoder are significantly high. Therefore,

we propose to switch the underlying ResNet18 encoder with MobileNetv2 [29], which

provides a favorable accuracy-speed/memory trade-off. Fig. 1 demonstrates the above

mentioned switch.

Fig. 1. Network Architecture. [top figure] Monodepth2 model with ResNet18 encoder.
[bottom figure] Depth network with MobileNetv2 as the encoder.

Most efficient convolutional neural networks make use of depth-wise separable

convolution which is a combination of depth-wise convolution and point-wise convolution.

Unlike standard convolution, depth-wise convolution performs lightweight filtering by

applying the convolution kernel to per input channel. The features are then combined

linearly with the help of point-wise convolution which is a 1x1 standard convolutional

12

layer. Additionally, MobileNetv2 [29] includes inverted residual with linear bottlenecks.

Residual blocks are similar to that of ResNet18, it adds a shortcut connection between

current and previous activations. Inverted linear bottlenecks are used to expand the lower

dimensional input to a higher dimension layer. This is then consumed by the depth-wise

separable convolution that maintains low parameter count and computational costs. The

higher dimensional layer is again converted back to the lower dimension using the

pointwise 1x1 convolution, to allow residual connection from the previous activation.

Here, since we squeeze the layer, linear activation is used to tackle the loss of information.

This design is represented in Fig. 2 and Fig. 3.

Fig. 2. Expansion of Convolutional Blocks. [left figure] Expansion of residual block in
ResNet18. [right figure] Expansion of residual inverted bottleneck block in MobileNetv2.

Fig. 3. Evolution of input in the residual inverted bottleneck block of MobileNetv2.

13

Additionally, optimization techniques like channel pruning and quantization are

applied to further bring down the computational requirement. Encoder being the heavy

work in the architecture as it plays a crucial role in learning the feature maps of an input

image, it requires more memory and its inference time is higher when compared to the

decoder. Therefore, the optimization techniques are predominantly applied to the encoder

and the decoder is adjusted accordingly. Fig. 1 and 4 shows the network before and after

altering the architecture.

Fig. 4. Network Architecture - Before and After Pruning. [top figure] Baseline network
architecture before pruning. [bottom figure] The pruned model achieved by removing
redundant channels in convolution layers. The pruned model weights are then quantized
to 8-bit integers to further reduce memory footprint and inference time.

3.2 Channel Pruning with Sparsity

Channel pruning is the process of removing the redundant channels in the layers of

the network. Following [18], we adopt the channel pruning technique. Removing the

14

channels in one layer will change the input of the following layer. Therefore, the network

needs to be accordingly modified. Channel pruning constitutes two steps - selection and

reconstruction.

3.2.1 Channel Selection

First, the model is trained with the baseline architecture that has a small and efficient

convolutional neural network (MobileNetv2) in the encoder.

||Lwi||1 =
h∗w

∑
x=1
|Wh,w| (6)

where W are the corresponding weights.

From this architecture, the redundant channels are selected with the help of the L1

norm of the weights of the channels in a given convolution layer. Consider a convolution

layer with n input channels and c output channels. The expected outcome is to reduce the

c output channels in the original architecture to c
′

(1≤ c
′ ≤ c). L1 norm of a channel i in

a convolution layer l with n input channels, spatial height of h and spatial width of w is

given by Equation 6. It is the sum of the absolute weights in the given channel.

The array Lw = [||Lw1||1, ||Lw2||1....||Lwi||1....||Lwn||1] is the list of the L1 norms of

all the n channels in convolution layer l of a network. From this list Lw, k (pruning rate)

minimum values are identified. The indices of these minimum values are the indices of

the channels that need to be pruned. Fig. 5 demonstrates the process of channel pruning.

The original trained model will have k = 0, as the value of k is increased the value of c
′

will decrease. In [15], [20], it is observed that the sparsity increases as we go deeper into

the network. Therefore in our research, we have used incremental pruning rate as we go

deeper into the neural network. The intuition behind incremental pruning rate comes from

the fact that while fine-tuning the pruned model, the layers close to the input are more

likely to learn the general features of the input images than the layers deeper in the

network. Therefore we do not want to prune the initial layers much.

15

Fig. 5. Channel Pruning. A convolution layer consists of prescribed channels. Some of
these channels can be redundant (as shaded on red). Pruning is the process of identifying
these redundant channels and removing them.

3.2.2 Network Reconstruction

The encoder which is a directed acyclic graph is traversed to perform channel

selection (Section 3.2.1) at each convolution layer given the desired pruning rate. The

output of the channel selection process gives the indices of the channels to be pruned.

These channels are pruned by removing all their incoming, outgoing connections and their

corresponding weights. Note that while performing channel selection in the subsequent

convolution layers, the weights corresponding to pruned channels is not considered as it is

already pruned [18]. After pruning the original output at layer l, Wl = [W1,W2,W3,Wc]

will become Wl = [W1,W2,W3,Wc′].

Pruning often leads to accuracy loss, this lost accuracy can be compensated

considerably by fine-tuning or retraining the pruned network with the weights of the

baseline network as the initial weights.

16

3.3 8-Bit Static Quantization

Another simple edge computing performance optimization technique, quantization, is

performed on the pruned network. A quantized model uses integers instead of

floating-point values to perform some or all of the operations on the weight and activation

matrix. This enables the use of high-performance vectorized operations on a variety of

hardware platforms, as well as a more compact model representation. This strategy is

particularly effective in saving a significant amount of inference calculation time without

sacrificing too much inference accuracy.

xq = round(
1
s

x+ z) (7)

s =
β −α

βq−αq
(8)

z = round(
βαq−αβq

β −α
) (9)

In static post training quantization, a floating point value x ∈ [α,β] is converted into a

8-bit integer xq ∈ [αq,βq] using Equation 7 [11], [14], where s (Equation 8) is a positive

floating point scale parameter and z (Equation 9) is an integer zero-point parameter. α

and β are the minimum and maximum bounds of the weight/activation matrix.

To perform quantization, we use the fine-tuned pruned model, the convolution and

batch normalization layers are fused so that these multiple layers are abstracted as a

single layer. It is then calibrated on a representative dataset to understand the distribution

and to calculate scale and zero-point parameters. Channel wise 8-bit quantization is

performed on the trained floating-point weights and activations with the calculated s and z

17

values. At inference, these quantized weights and activations are used to achieve faster

inference and reduced memory usage.

18

4 EXPERIMENTS

In this section, we detail our experimental methodology.

4.1 Datasets and Training

We use the KITTI Raw data set [38] to train and evaluate our technique. This is a vast

dataset that is commonly used as a computer vision benchmark. Following

Monodepth2 [6] we use Eigen et al.’s [39] data split and Zhou et al.’s [8] pre-processing

to eliminate static frames from monocular sequences. This generates 39,810 monocular

training sequences made up of a three-frame sequence, and 4,424 validation sequences.

We use Monodepth2 [6] architecture to analyze the depth results. The ResNet18

encoder of [6] is replaced with MobileNetv2 architecture. The MobileNetv2 network with

decoder and pose architecture is trained on the KITTI data set. Consequently, the network

is traversed to perform channel pruning (channel selection and network reconstruction)

with the given pruning ratios. This process can result in a loss of significant accuracy.

Therefore, the model is fine-tuned to regain accuracy. The pruned network further

undergoes quantization where the 32-bit floating-point model is converted to an 8-bit

quantized model.

We also use our final fine-tuned model to inference our strategy on the Cityscapes

data set [40]. Cityscapes is another dataset containing video data of street scenes. We

perform this inference test on the Cityscapes dataset to ensure that our model did not

memorize any details pertaining to specific street characteristics within the Kitti dataset.

The quantitative analysis results are presented in Section 4.3. In Section 4.5, we also

describe the ablation research comparing the impacts of our various contributions.

4.2 Implementation Details

The proposed algorithm adopts Pytorch framework [41] and the experiments to

evaluate the performance of inference are performed using CPU - Intel(R) Core (TM)

19

i7-6700K CPU @ 4.00GHz, 32 GB Memory. To train and fine-tune our models we make

use of GeForce GTX 1080 (Driver Version: 440.100, CUDA Version: 10.2) GPU. The

pose and depth network will be jointly optimized using Adam Optimizer [42] with

β1 = 0.9, β2 = 0.999 . The training process is executed for 20 epochs with a batch size

of 8. The learning rate used for the first 15 epochs is 1e−4, it is then decayed to 1e−5 in

the remaining epochs. As with the work [6], for training the baseline network, the

MobileNetv2 encoder uses pre-trained ImageNet [43] weights as it has shown to reduce

training time and increase the overall accuracy of the predicted depths. λ in Equation 5 is

taken as 1e−3. Input images of 640 x 192 pixels will be augmented with 50% probability

using horizontal flip, random contrast (±0.2), saturation (±0.2), hue jitter (±0.1), and

brightness (±0.2). Importantly, augmentations are only applied to images that are fed into

the depth and pose network, whereas the loss in Equation 5 is calculated using the

original ground truth images.

4.3 KITTI Results

The experiments to measure inference characteristics on the KITTI Raw dataset [38]

is shown in Table 1 and Table 2. When comparing our method, we observe that we

outperform in terms of inference speed and reduced memory utilization compared to the

existing self-supervised monocular trained depth estimation by a significant margin with

tolerable degradation of performance concerning our use case. It is also important to note

that even though the performance is slightly degraded, the numbers fair well than the

majority of the previous works.

From the depth maps in Fig. 6, it can be observed that our model performs almost

equivalently as the baseline architecture Monodepth2 [6]. We can also observe that our

model suffers with thinner structures like poles and signboards and with reflective

surfaces. However, since our use case concentrates on warning the user of the impending

obstacle, the details like the exact structure of thinner obstacles can be overlooked, since

20

the riding and avoiding obstacle decisions are made by the human riders. Prediction at

reflective surfaces has been a common issue with self-supervised depth estimation as the

re-projection error is ill-defined for transparent surfaces. The same is observed with both

Monodepth2 and our method.

Table 1
Quantitative Results - Performance. Loss metric (Abs Rel, Sq Rel, RMSE, RMSE log)

- lower is better and accuracy metrics (δ) - higher is better.

Method Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

SfMLearner [8] ⊥ 0.183 1.595 6.709 0.270 0.734 0.902 0.959
DF-Net [9] 0.150 1.124 5.507 0.223 0.806 0.933 0.973
Godard [5] 0.148 1.344 5.927 0.247 0.803 0.922 0.964
EPC++ [44] 0.141 1.029 5.350 0.216 0.816 0.941 0.976

Struct2Depth [10] 0.141 1.026 5.291 0.215 0.816 0.945 0.979
Monodepth2 [6] 0.115 0.903 4.863 0.193 0.877 0.959 0.981

Adrian [7] 0.106 0.861 4.699 0.185 0.889 0.962 0.982
Ours 0.132 1.016 5.172 0.208 0.840 0.949 0.979

⊥ indicates that the new results from github is considered.

Table 2
Quantitative Results - Resource utilization

Method CPU Inference time(ms) Memory(MB)

SfMLearner [8] 119.82±4.40 132.80
DF-Net [9] - 396.9
Godard [5] 1070.44±5.04 379.2
EPC++ [44] - 146.10

Struct2Depth [10] - 67.00
Monodepth2 [6] 103.91±1.19 59.43

Adrian [7] 6108.50±12.23 252.7
Ours 44.39±1.01 3.29

4.4 Cityscapes Results

Table 3 and Table 4 presents the quantitative results on Cityscapes dataset [40] using

the model trained on the KITTI Raw dataset. It can be observed from the tables and Fig. 7

that our algorithm achieves superior results in terms of inference time and memory

21

Fig. 6. Qualitative results on KITTI Raw test set. From the figures above we can
confirm that our model has performed almost equivalently as the baseline architecture
Monodepth2 [6].

utilization than the other methods that rely on monocular self-supervised depth estimation

with minor loss of performance.

Table 3
Cityscapes Results - Performance. Loss metric (Abs Rel, Sq Rel, RMSE, RMSE log) -

lower is better and accuracy metrics (δ) - higher is better. Q - Quantization

Method Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Adrian [7] 0.232 2.870 11.206 0.326 0.587 0.852 0.943
Monodepth2 [6] 0.256 3.220 11.634 0.347 0.540 0.829 0.934

MobileNetv2 Baseline 0.247 3.195 11.705 0.343 0.559 0.833 0.934
Ours w/o Q 0.260 3.460 12.286 0.361 0.531 0.810 0.922

Ours 0.272 3.712 12.746 0.377 0.515 0.792 0.910

4.5 Ablation Study

Table 5 and Table 6 shows the experiments carried out in our research. We start from

Monodepth2 [6] depth architecture which has ResNet18 as the encoder. Although Adrian

et al.’s [7] performance is the current state-of-the-art with the best-achieved performance

in the field of unsupervised monocular trained depth estimation, their model size and

inference time are high when compared to Monodepth2. Since, our use case is to

22

Table 4
Cityscapes Results - Resource utilization. Q - Quantization, P - Pruning

Method CPU Inference time(ms) Memory(MB)

Adrian [7] 6109.23±14.01 252.7
Monodepth2 [6] 106.55±4.07 59.43

MobileNetv2 Baseline 78.26±1.45 17.72
Ours w/o Q 57.61±0.84 8.41

Ours 45.46±1.44 3.29

Fig. 7. Qualitative results on CityScapes test set. Our model has performed almost
equivalently as the baseline architecture Monodepth2 [6], thus confirming that generaliza-
tion was achieved.

supervise the humans to enhance safety measures and not for self-supervised use cases

like autonomous driving, some compromise in the performance is tolerable.

As part of the ablation study, we first perform quantization on the Monodepth2

network to record its performance. Then we prune the original network with different

pruning rates, followed by applying quantization on this pruned network. We observe

steady improvement in the CPU inference time and memory utilization with tolerable

degradation in the performance. These experiments are again repeated by switching

ResNet18 with MobileNetv2.

23

Ta
bl

e
5

A
bl

at
io

n
St

ud
y

-P
er

fo
rm

an
ce

.R
es

ul
ts

of
di

ff
er

en
te

xp
er

im
en

ts
on

M
on

od
ep

th
2

[6
]

(R
es

N
et

18
)

an
d

de
pt

h
ne

tw
or

k
w

ith
M

ob
ile

N
et

v2
ar

e
re

co
rd

ed
.P

ru
ni

ng
ra

te
is

an
hy

pe
rp

ar
am

et
er

us
ed

to
pr

un
e

ch
an

ne
ls

of
co

nv
ol

ut
io

na
ll

ay
er

s
at

st
ag

e*
.L

os
s

m
et

ri
c

(A
bs

R
el

,S
q

R
el

,R
M

SE
,R

M
SE

lo
g)

-
lo

w
er

is
be

tte
r

an
d

ac
cu

ra
cy

m
et

ri
cs

(δ
)

-
hi

gh
er

is
be

tte
r.

C
P

-
C

on
se

rv
at

iv
e

Pr
un

in
g,

A
P

-
A

gg
re

ss
iv

e
Pr

un
in

g

M
et

ho
d

st
ag

e1
st

ag
e2

st
ag

e3
st

ag
e4

A
bs

R
el

Sq
R

el
R

M
SE

R
M

SE
lo

g
δ
<

1.
25

δ
<

1.
25

2
δ
<

1.
25

3

E
nc

od
er

ba
ck

bo
ne

-
R

es
N

et
18

[6
]

B
as

el
in

e
0

0
0

0
0.

11
5

0.
90

3
4.

86
3

0.
19

3
0.

87
7

0.
95

9
0.

98
1

B
as

el
in

e+
Q

ua
nt

iz
at

io
n

0
0

0
0

0.
11

8
0.

89
5

4.
84

7
0.

19
6

0.
87

0
0.

95
8

0.
98

1
C

on
se

rv
at

iv
e

Pr
un

in
g

10
20

20
30

0.
11

8
0.

90
8

4.
87

9
0.

19
7

0.
86

9
0.

95
8

0.
98

0
C

P+
Q

ua
nt

iz
at

io
n

10
20

20
30

0.
11

8
0.

91
2

4.
88

6
0.

19
7

0.
86

9
0.

95
8

0.
98

0
A

gg
re

ss
iv

e
Pr

un
in

g
20

30
30

50
0.

12
0

0.
93

1
4.

91
8

0.
19

8
0.

86
8

0.
95

8
0.

98
0

A
P+

Q
ua

nt
iz

at
io

n
20

30
30

50
0.

12
0

0.
92

7
4.

91
5

0.
19

9
0.

86
7

0.
95

8
0.

98
0

E
nc

od
er

ba
ck

bo
ne

-
M

ob
ile

N
et

v2

B
as

el
in

e
0

0
0

0
0.

12
0

0.
91

6
4.

93
7

0.
19

6
0.

86
5

0.
95

7
0.

98
1

B
as

el
in

e+
Q

ua
nt

iz
at

io
n

0
0

0
0

0.
12

5
0.

90
6

5.
15

8
0.

20
4

0.
84

5
0.

95
0

0.
98

0
C

on
se

rv
at

iv
e

Pr
un

in
g

10
20

20
30

0.
12

3
1.

00
1

5.
04

3
0.

20
0

0.
86

1
0.

95
6

0.
98

0
C

P+
Q

ua
nt

iz
at

io
n

10
20

20
30

0.
13

5
1.

13
3

5.
40

3
0.

21
4

0.
83

5
0.

94
5

0.
97

7
A

gg
re

ss
iv

e
Pr

un
in

g
20

30
30

50
0.

12
5

0.
95

8
5.

02
1

0.
20

1
0.

85
6

0.
95

4
0.

98
0

A
P+

Q
ua

nt
iz

at
io

n
20

30
30

50
0.

13
2

1.
01

6
5.

17
2

0.
20

8
0.

84
0

0.
94

9
0.

97
9

24

Ta
bl

e
6

A
bl

at
io

n
St

ud
y

-C
om

pu
ta

tio
na

lF
oo

tp
ri

nt
.C

P
-

C
on

se
rv

at
iv

e
Pr

un
in

g,
A

P
-

A
gg

re
ss

iv
e

Pr
un

in
g

M
et

ho
d

st
ag

e1
st

ag
e2

st
ag

e3
st

ag
e4

C
PU

In
fe

re
nc

e
tim

e(
m

s)
M

em
or

y(
M

B
)

Pa
ra

m
et

er
s(

M
ill

io
ns

)

E
nc

od
er

ba
ck

bo
ne

-
R

es
N

et
18

[6
]

B
as

el
in

e
0

0
0

0
10

3.
91
±

1.
19

59
.4

3
14

.8
4

B
as

el
in

e+
Q

ua
nt

iz
at

io
n

0
0

0
0

78
.8

5
±

1.
08

24
.4

3
14

.8
4

C
on

se
rv

at
iv

e
Pr

un
in

g
10

20
20

30
93
.6

0
±

2.
49

37
.9

5
9.

47
C

P+
Q

ua
nt

iz
at

io
n

10
20

20
30

70
.2

1
±

1.
04

15
.4

5
9.

47
A

gg
re

ss
iv

e
Pr

un
in

g
20

30
30

50
82
.7

3
±

3.
48

27
.3

5
6.

81
A

P+
Q

ua
nt

iz
at

io
n

20
30

30
50

62
.7

2
±

2.
73

11
.1

8
6.

81

E
nc

od
er

ba
ck

bo
ne

-
M

ob
ile

N
et

v2

B
as

el
in

e
0

0
0

0
77
.8

7
±

5.
09

17
.7

2
4.

38
B

as
el

in
e+

Q
ua

nt
iz

at
io

n
0

0
0

0
60
.7

5
±

1.
85

7.
39

4.
38

C
on

se
rv

at
iv

e
Pr

un
in

g
10

20
20

30
65
.2

1
±

4.
47

10
.7

5
2.

65
C

P+
Q

ua
nt

iz
at

io
n

10
20

20
30

50
.5

3
±

1.
15

4.
46

2.
65

A
gg

re
ss

iv
e

Pr
un

in
g

20
30

30
50

57
.8

2
±

0.
63

8.
41

2.
07

A
P+

Q
ua

nt
iz

at
io

n
20

30
30

50
44
.3

9±
1.

01
3.

29
2.

07

25

The baseline architecture with MobileNet has achieved significant speedup with reduced

memory usage. Further, this network is pruned at different rates and then quantization is

performed. We define conservative pruning, when 10, 20, 20, 30 percent of channels are

removed from stage1, stage2, stage3, and stage4 respectively. And aggressive pruning is

when 20, 30, 30, 50 percent channels are removed incrementally at different stages. A

stage in an encoder is a collection of convolution layers, batch normalizations, and

activation layers that has the same output resolution at each of its layers.

The last row in the Table 5 and Table 6 gives the optimal results with 57.3% speed up

in inference time and 94.5% memory savings. Therefore, this model may be adopted as

the algorithm to be embedded on the smart helmets. The observed degradation in

performance is elaborated in Section 6.

26

5 DISCUSSIONS

Previous studies [45] have shown to reduce computation footprint with help of the

combination of pruning and quantization techniques. The same is validated with the

below experiments. In our research, we leverage the combining technique and adapt them

for a complex encoder-decoder architecture like the depth estimation network to achieve

results with a considerable reduction of inference time and memory bandwidth.

To evaluate this hypothesis, we perform simple experiments using classification

models - ResNet18, ResNet50 [22], VGG16 [22] and InceptionV3 [23] - on datasets like

CIFAR [46], SVHN [47], and MNIST [48] to demonstrate the benefits of combining both

pruning and quantization.

For these experiments, we use a batch size of 64 and the models were trained for 100

epochs on an input image of height and width of 32 pixels. The saved model weights are

the ones that performed the best in the 100 epochs. The incremental pruning rates were

assigned to convolution layers of different stages. For conservative pruning, the pruning

rates are 10, 20, 20, 30 percent applied across stage1, stage2, stage3, and stage4 of the

network and for aggressive pruning, it is 30, 40, 40, 50 percent across different stages.

From Fig. 8, 9 and 10, it can be interpreted that pruning and quantization, when used

together, will drastically reduce the computation footprint. Also, when conservative

pruning and quantization are performed individually on a classification model, it is

observed that quantization performs better than pruning in terms of inference time. This is

because the memory size is drastically reduced with quantization. After all, quantization

converts floating-point values to fixed-point values. Whereas aggressive pruning performs

better than quantization when performed individually on the original network, due to a

drastic reduction in the number of channels of a convolution neural network. It is also

important to note that in complex models like InceptionV3 and ResNet50 the accuracy of

the pruned model is more than that of the original model thus validating that deep neural

27

networks often overparameterize and therefore can be safely pruned to improve accuracy,

reduce the model size and inference time.

Original Quantization Pruning PQ AggPrune APQ
Optimization…techniques

86

88

90

92

94

96

Ac
cu
ra
cy
…
(in
…
%
)

ResNet18
VGG16
InceptionV3
ResNet50

Original Quantization Pruning PQ AggPrune APQ
Optimization…techniques

0

5

10

15

20

N
um

be
r…

of
…
Pa

ra
m
et
er
s…

(in
…
m
illi
on
s)

ResNet18
VGG16
InceptionV3
ResNet50

ResNet18 VGG16 InceptionV3 ResNet50
Models

0

20

40

60

80

M
em

or
y…

ut
iliz
at
io
n…

(in
…
M
B) Original

Quantization
Vanilla…Pruning
VP+Quantization
Agressive…Pruning
AP+Quantization

ResNet18 VGG16 InceptionV3 ResNet50
Models

0

50

100

150

200

In
fe
re
nc
e…

tim
e…

(in
…
m
s)

Original
Quantization
Vanilla…Pruning
VP+Quantization
Agressive…Pruning
AP+Quantization

Fig. 8. Experiments on CIFAR10 dataset. Figure compares the accuracy, number of
parameters, inference time and memory utilization of various neural network architectures
on CIFAR10 dataset.CP refers to conservative pruning and AP refers to aggressive pruning.
PQ is conservative pruning + quantization and APQ is aggressive pruning + quantization.

However, similar results of reduced inference time are not observed in a complex

model like InceptionV3. As observed in the last plot of Fig. 8, 9, 10, an anomaly is seen

when pruning and quantization are performed together. As proposed in [49], this anomaly

may be due to the overhead posed by the dequantization process in complex networks.

However, this doesn’t explain the results obtained when quantization alone is performed

on this network. This stimulates the need for additional research on the anomaly observed

in InceptionV3 when both quantization and pruning are used in unison, and we carry over

these experiments for our future work.

Overall, the results indicate that pruning (both conservative and aggressive) followed

by 8-bit quantization improves inference time with tolerable loss in accuracy. In this

28

Original Quantization Pruning PQ AggPrune APQ
Optimization…techniques

99.15

99.20

99.25

99.30

99.35
Ac
cu
ra
cy
…
(in
…
%
)

ResNet18
VGG16
InceptionV3
ResNet50

Original Quantization Pruning PQ AggPrune APQ
Optimization…techniques

0

5

10

15

20

N
um

be
r…

of
…
Pa

ra
m
et
er
s…

(in
…
m
illi
on
s)

ResNet18
VGG16
InceptionV3
ResNet50

ResNet18 VGG16 InceptionV3 ResNet50
Models

0

20

40

60

80

M
em

or
y…

ut
iliz
at
io
n…

(in
…
M
B) Original

Quantization
Vanilla…Pruning
VP+Quantization
Agressive…Pruning
AP+Quantization

ResNet18 VGG16 InceptionV3 ResNet50
Models

0

50

100

150

200

In
fe
re
nc
e…

tim
e…

(in
…
m
s) Original

Quantization
Vanilla…Pruning
VP+Quantization
Agressive…Pruning
AP+Quantization

Fig. 9. Experiments on MNIST dataset. Figure compares the accuracy, number of
parameters, inference time and memory utilization of various neural network architectures
on MNIST dataset.

Original Quantization Pruning PQ AggPrune APQ
Optimization…techniques

95.0

95.2

95.4

95.6

95.8

96.0

96.2

96.4

Ac
cu
ra
cy
…
(in
…
%
)

ResNet18
VGG16
InceptionV3
ResNet50

Original Quantization Pruning PQ AggPrune APQ
Optimization…techniques

0

5

10

15

20

N
um

be
r…

of
…
Pa

ra
m
et
er
s…

(in
…
m
illi
on
s)

ResNet18
VGG16
InceptionV3
ResNet50

ResNet18 VGG16 InceptionV3 ResNet50
Models

0

20

40

60

80

M
em

or
y…

ut
iliz
at
io
n…

(in
…
M
B) Original

Quantization
Vanilla…Pruning
VP+Quantization
Agressive…Pruning
AP+Quantization

ResNet18 VGG16 InceptionV3 ResNet50
Models

0

50

100

150

200

In
fe
re
nc
e…

tim
e…

(in
…
m
s) Original

Quantization
Vanilla…Pruning
VP+Quantization
Agressive…Pruning
AP+Quantization

Fig. 10. Experiments on SVHN dataset. Figure compares the accuracy, number of
parameters, inference time and memory utilization of various neural network architectures
on SVHN dataset.

29

research, we define accuracy as the efficiency of the depth network to predict the depth at

an object level or the efficiency of predicting an obstacle itself. Therefore, the loss of

accuracy at the pixel level is considered tolerable as a human is involved rather than a

machine to detect obstacles.

30

6 PROPOSED METRICS

As mentioned previously, the performance demands are quite different for the

application at hand. In this application, the result of depth estimation is used to only assist

a human, and more importantly, the decision-making task is held by a human rather than a

machine/algorithm. Therefore, we can make a few compromises on the performance of

the depth estimation. Specifically, we do not require high accuracy at the pixel level.

Whereas, we require high accuracy at the object level. Therefore, we propose a metric to

measure object-level performance in such applications.

G j = agg(p1, p2, ..., pi, ..., pn) (10)

Instead of calculating loss and accuracy at a pixel level (Fig. 11), we propose to divide

the images into N grids with each having n pixels as shown in Fig. 12. Let pi be the value

of the ith pixel in the grid. First, we extract the aggregate (agg = mean or min or max)

value G j of the n pixels in a grid (Equation 10). Upon calculating the aggregate values of

all the grids in the image we get an array Gimg = [G1,G2, ...,G j, ...,GN]. This array for

predicted depth map Gpred is compared with that of the ground truth depth map Gtruth.

The comparison provides a coarser performance measure that will more aptly evaluate the

object-level performance needed in the e-Scooter application.

For our experiments, we have taken a grid size of 16 and compared the performance

metrics with mean, min, and max as aggregation methods. Table 7, Table 8 and Table 9

records these experiments. However, since our objective is to detect nearby objects

correctly, we believe that taking the minimum value of the pixels in the grid of a depth

map is more suitable. Taking maximum will lead to accounting for the faraway objects

which are unimportant for our use-case. While taking mean can suppress the importance

31

Fig. 11. Pixel-level performance evaluation. A pixel in predicted depth map is compared
with the corresponding pixel in the ground-truth depth map.

Fig. 12. Coarser grained performance evaluation. Here images are divided into grids
(in our experiments grid size used is 16x16 pixels). The minimum value of a grid in
predicted depth map is compared with the minimum value of the corresponding grid in
the ground-truth depth map.

of pixels that have closer depth. Conservative pruning and aggressive pruning are defined

by the same pruning rate as in Table 5.

Thus, our optimized model has achieved 57.3% speed up in inference time, 94.5%

memory savings and 3.8% improvement in object level performance when compared with

the state-of-the-art Monodepth2 [6] model. The comparison of performance is performed

using Table 7 and rmse loss values.

32

Table 7
Object Level Performance Performance measured when minimum value of the grid is
chosen. Loss metric (Abs Rel, Sq Rel, RMSE, RMSE log) - lower is better and accuracy

metrics (δ) - higher is better.

Method Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Encoder backbone - ResNet18 [6]

Baseline 0.161 2.489 2.292 0.111 0.863 0.923 0.959
Baseline+Quantization 0.159 2.417 2.296 0.110 0.863 0.922 0.963
Conservative Pruning 0.157 2.361 2.226 0.107 0.867 0.932 0.962

CP+Quantization 0.157 2.350 2.246 0.108 0.865 0.931 0.963
Aggressive Pruning 0.163 2.513 2.302 0.113 0.857 0.928 0.960
AP+Quantization 0.162 2.487 2.301 0.113 0.856 0.926 0.957

Encoder backbone - MobileNetv2

Baseline 0.154 2.240 2.136 0.106 0.872 0.934 0.963
Baseline+Quantization 0.155 2.308 2.133 0.104 0.881 0.934 0.962
Conservative Pruning 0.152 2.222 2.122 0.104 0.881 0.934 0.960

CP+Quantization 0.158 2.424 2.177 0.106 0.873 0.932 0.963
Aggressive Pruning 0.160 2.428 2.219 0.107 0.876 0.931 0.963
AP+Quantization 0.158 2.388 2.203 0.106 0.875 0.929 0.960

Table 8
Object Level Performance Performance measured when maximum value of the grid is
chosen. Loss metric (Abs Rel, Sq Rel, RMSE, RMSE log) - lower is better and accuracy

metrics (δ) - higher is better.

Method Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Encoder backbone - ResNet18 [6]

Baseline 0.098 1.070 2.933 0.110 0.848 0.940 0.975
Baseline+Quantization 0.098 1.075 2.958 0.110 0.844 0.940 0.973
Conservative Pruning 0.096 1.031 2.925 0.109 0.844 0.943 0.973

CP+Quantization 0.098 1.093 2.964 0.110 0.845 0.940 0.973
Aggressive Pruning 0.097 1.170 2.909 0.107 0.848 0.941 0.975
AP+Quantization 0.099 1.198 2.977 0.109 0.847 0.940 0.975

Encoder backbone - MobileNetv2

Baseline 0.092 0.850 2.759 0.106 0.845 0.946 0.978
Baseline+Quantization 0.089 0.821 2.654 0.105 0.850 0.944 0.976
Conservative Pruning 0.094 0.904 2.857 0.109 0.847 0.941 0.973

CP+Quantization 0.091 0.833 2.732 0.106 0.845 0.943 0.975
Aggressive Pruning 0.091 0.859 2.703 0.106 0.850 0.944 0.973
AP+Quantization 0.090 0.859 2.704 0.106 0.845 0.941 0.975

33

Table 9
Object Level Performance Performance measured when mean value of the grid is

chosen. Loss metric (Abs Rel, Sq Rel, RMSE, RMSE log) - lower is better and accuracy
metrics (δ) - higher is better.

Method Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Encoder backbone - ResNet18 [6]

Baseline 0.042 0.202 0.992 0.042 0.963 0.990 1.000
Baseline+Quantization 0.043 0.217 1.011 0.042 0.963 0.988 0.999
Conservative Pruning 0.041 0.193 0.976 0.041 0.962 0.990 1.000

CP+Quantization 0.042 0.212 0.989 0.042 0.962 0.990 0.999
Aggressive Pruning 0.042 0.203 0.990 0.042 0.960 0.991 1.000
AP+Quantization 0.043 0.206 1.003 0.043 0.957 0.991 1.000

Encoder backbone - MobileNetv2

Baseline 0.039 0.159 0.917 0.040 0.968 0.993 1.000
Baseline+Quantization 0.038 0.156 0.876 0.038 0.968 0.993 1.000
Conservative Pruning 0.040 0.176 0.934 0.040 0.963 0.991 1.000

CP+Quantization 0.038 0.175 0.898 0.039 0.963 0.991 1.000
Aggressive Pruning 0.038 0.150 0.876 0.039 0.963 0.993 1.000
AP+Quantization 0.038 0.150 0.878 0.039 0.965 0.991 1.000

34

7 FUTURE WORK

There are still several unanswered questions in this research. First, we need a better

way to quantify the real-time deadlines for depth estimation. Although various works

discuss these real-time deadlines [50]–[52], there is no one standard real-time deadline

defined for these use-cases. This is mostly because the deadlines are dependent on the

environment, which is dynamic (example: speed of the rider). Second, there is a need to

study how the system should deal with stale data and how to effectively manage resources

at the edge.

In our work, we proposed coarse-grained evaluation metrics that can be used to assess

the performance of the depth estimation algorithm on an image. However, since our

use-case predominantly concentrates on identifying closer objects, we can extend the

coarse-grained metrics to be evaluated only on the pixels of the closer objects rather than

on the entire image. This could be considered more suitable for our use case and it is the

future direction of this research.

Another experiment includes profiling computationally diverse processing devices to

study their impact on the inference time and computational footprint.

All these questions and improvements are the directions for our future work.

35

8 CONCLUSION

This work is motivated by the increased number of road accidents involving

micro-mobility vehicles such as electric scooters. We envision that a smart helmet

equipped with the capability to provide a real-time assessment of the street scene can

potentially avoid accidents. Monocular depth estimation algorithms are a promising

solution for this application. However, the current algorithms are too computationally

heavy to run on a resource-constrained edge device in real-time. A smart helmet must be

able to present results in the order of a few milliseconds to be considered an effective tool

for e-Scooter riders. This is achieved by optimizing the depth network through efficient

convolution neural network, quantization, and neural network introspection as proposed in

the research. These techniques help in reducing the CPU inference time and compute

footprint without a substantial decrease in accuracy. This allows for the efficient

deployment of a depth network on an edge device.

This research presents extensive experimental results on different depth estimation

algorithms by applying the aforementioned techniques to optimize performance at the

edge. We observe that using MobileNetv2 provided significant improvement. This

followed by channel pruning and 8-bit quantization are an effective way to reduce

inference time with only a slight decrease in the depth estimation error. Qualitatively, we

can tolerate the performance drop since our depth maps are consumed by humans and not

machines. We also introduce object-level performance metrics that are essential for such

use cases. We observed that when evaluated at an object-level, our method outperformed

the baseline Monodepth2 [6].

36

Literature Cited

[1] B. Preston, “New study shows safety risks of riding e-scooters on the sidewalk,”
https://www.consumerreports.org/electric-scooters/
safety-risks-of-riding-e-scooters-on-the-sidewalk-iihs-study/, (accessed Nov 1,
2020).

[2] H. Fu, M. Gong, C. Wang, K. Batmanghelich, and D. Tao, “Deep ordinal regression
network for monocular depth estimation,” in 2018 IEEE/CVF Conf. Computer Vision
and Pattern Recognition, pp. 2002–2011.

[3] X. Guo, H. Li, S. Yi, J. Ren, and X. Wang, “Learning monocular depth by distilling
cross-domain stereo networks,” 2018, arXiv:1808.06586.

[4] R. Garg, V. K. BG, G. Carneiro, and I. Reid, “Unsupervised cnn for single view
depth estimation: Geometry to the rescue,” 2016, arXiv:1603.04992.

[5] C. Godard, O. M. Aodha, and G. J. Brostow, “Unsupervised monocular depth
estimation with left-right consistency,” in 2017 IEEE Conf. Computer Vision and
Pattern Recognition, pp. 6602–6611.

[6] C. Godard, O. M. Aodha, M. Firman, and G. Brostow, “Digging into self-supervised
monocular depth estimation,” in 2019 IEEE/CVF Int. Conf. Computer Vision, pp.
3827–3837.

[7] A. Johnston and G. Carneiro, “Self-supervised monocular trained depth estimation
using self-attention and discrete disparity volume,” in 2020 IEEE/CVF Conf.
Computer Vision and Pattern Recognition, pp. 4755–4764.

[8] T. Zhou, M. Brown, N. Snavely, and D. G. Lowe, “Unsupervised learning of depth
and ego-motion from video,” in Proc. IEEE Conf. Computer Vision and Pattern
Recognition, July 2017.

[9] Y. Zou, Z. Luo, and J.-B. Huang, “Df-net: Unsupervised joint learning of depth and
flow using cross-task consistency,” 2018, arXiv:1809.01649.

[10] V. Casser, S. Pirk, R. Mahjourian, and A. Angelova, “Depth prediction without the
sensors: Leveraging structure for unsupervised learning from monocular videos,” in
33rd AAAI Conf. Artificial Intelligence, 2019.

37

https://www.consumerreports.org/electric-scooters/safety-risks-of-riding-e-scooters-on-the-sidewalk-iihs-study/
https://www.consumerreports.org/electric-scooters/safety-risks-of-riding-e-scooters-on-the-sidewalk-iihs-study/

[11] L. Mao, “Quantization for neural netoworks,”
https://leimao.github.io/article/Neural-Networks-Quantization/, (accessed Feb 21,
2020).

[12] J. Ma, Z. Zhu, L. Dai, and S. Guo, “Layer-by-layer quantization method for neural
network parameters,” in Proc. Int. Conf. Industrial Control Network and System
Engineering Research, 2019, pp. 22––26.

[13] Y. Choukroun, E. Kravchik, F. Yang, and P. Kisilev, “Low-bit quantization of neural
networks for efficient inference,” in 2019 IEEE/CVF Int. Conf. Computer Vision
Workshop, pp. 3009–3018.

[14] L. Mao, “Pytorch static quantization,”
https://leimao.github.io/blog/PyTorch-Static-Quantization/, (accessed Feb 21, 2020).

[15] M. Lin, R. Ji, Y. Zhang, B. Zhang, Y. Wu, and Y. Tian, “Channel pruning via
automatic structure search,” in Proc. 29th Int. Joint Conf. Artificial Intelligence, 2021,
arXiv:2001.08565.

[16] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both weights and connections for
efficient neural networks,” in Proc. 28th Int. Conf. Neural Information Processing
Systems, 2015, pp. 1135–1143.

[17] S. Srinivas, A. Subramanya, and R. V. Babu, “Training sparse neural networks,” in
2017 IEEE Conf. Computer Vision and Pattern Recognition Workshops, pp. 455–462.

[18] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning filters for
efficient convnets,” 2017, arXiv:1608.08710.

[19] S. Changpinyo, M. Sandler, and A. Zhmoginov, “The power of sparsity in
convolutional neural networks,” 2017, arXiv:1702.06257.

[20] T. Wu, X. Li, D. Zhou, N. Li, and J. Shi, “Differential evolution based layer-wise
weight pruning for compressing deep neural networks,” Sensors, vol. 21, no. 3, 2021.
[Online]. Available: https://www.mdpi.com/1424-8220/21/3/880

[21] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang, “Learning efficient
convolutional networks through network slimming,” in 2017 IEEE Int. Conf.
Computer Vision, pp. 2755–2763.

38

https://leimao.github.io/article/Neural-Networks-Quantization/
https://leimao.github.io/blog/PyTorch-Static-Quantization/
https://www.mdpi.com/1424-8220/21/3/880

[22] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in 2016 IEEE Conf. Computer Vision and Pattern Recognition, pp. 770–778.

[23] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the
inception architecture for computer vision,” in 2016 IEEE Conf. Computer Vision and
Pattern Recognition, pp. 2818–2826.

[24] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, “Densely connected
convolutional networks,” 2018, arXiv:1608.06993.

[25] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li, L. Fei-Fei, A. Yuille,
J. Huang, and K. Murphy, “Progressive neural architecture search,” 2018,
arXiv:1712.00559.

[26] I. Radosavovic, R. Kosaraju, R. Girshick, K. He, and P. Dollar, “Designing network
design spaces,” in 2020 IEEE/CVF Conf. Computer Vision and Pattern Recognition,
Jun 2020, pp. 10 425–10 433.

[27] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer,
“Squeezenet: Alexnet-level accuracy with 50x fewer parameters and <0.5mb model
size,” 2016, arXiv:1602.07360.

[28] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural networks for
mobile vision applications,” 2017, arXiv:1704.04861.

[29] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mobilenetv2:
Inverted residuals and linear bottlenecks,” 2019, arXiv:1801.04381.

[30] X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An extremely efficient
convolutional neural network for mobile devices,” in 2018 IEEE/CVF Conf.
Computer Vision and Pattern Recognition, pp. 6848–6856.

[31] M. Tan and Q. V. Le, “Efficientnet: Rethinking model scaling for convolutional
neural networks,” 2020, arXiv:1905.11946.

[32] Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating very deep neural
networks,” in 2017 IEEE Int. Conf. Computer Vision, pp. 1398–1406.

39

[33] “Quantization,” pytorch.org, accessed: Oct 1, 2020. [Online]. Available:
https://pytorch.org/docs/stable/quantization.html

[34] R. Krishnamoorthi, J. Reed, M. Ni, C. Gottbrath, and S. Weidman, “Introduction to
quantization on pytorch,”
https://pytorch.org/blog/introduction-to-quantization-on-pytorch/, (accessed Mar 27,
2020).

[35] M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect: Training deep neural
networks with binary weights during propagations,” in Proc. 28th Int. Conf. Neural
Information Processing Systems, 2015, pp. 3123—-3131.

[36] H. Pouransari, Z. Tu, and O. Tuzel, “Least squares binary quantization of neural
networks,” in 2020 IEEE/CVF Conf. Computer Vision and Pattern Recognition
Workshops, pp. 2986–2996.

[37] C. Wang, J. M. Buenaposada, R. Zhu, and S. Lucey, “Learning depth from
monocular videos using direct methods,” in 2018 IEEE/CVF Conf. Computer Vision
and Pattern Recognition, pp. 2022–2030.

[38] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving? the kitti
vision benchmark suite,” in 2012 IEEE Conf. Computer Vision and Pattern
Recognition, pp. 3354–3361.

[39] D. Eigen and R. Fergus, “Predicting depth, surface normals and semantic labels with
a common multi-scale convolutional architecture,” in 2015 IEEE Int. Conf. Computer
Vision, pp. 2650–2658.

[40] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke,
S. Roth, and B. Schiele, “The cityscapes dataset for semantic urban scene
understanding,” 2016, arXiv:1604.01685.

[41] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in pytorch,” 2017,
[Online]. Available: https://openreview.net/pdf?id=BJJsrmfCZ.

[42] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” 2017,
arXiv:1412.6980.

40

https://pytorch.org/docs/stable/quantization.html
https://pytorch.org/blog/introduction-to-quantization-on-pytorch/
https://openreview.net/pdf?id=BJJsrmfCZ

[43] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A
large-scale hierarchical image database,” in 2009 IEEE Conf. Computer Vision and
Pattern Recognition, pp. 248–255.

[44] C. Luo, Z. Yang, P. Wang, Y. Wang, W. Xu, R. Nevatia, and A. Yuille, “Every pixel
counts ++: Joint learning of geometry and motion with 3d holistic understanding,”
2019, arXiv:1810.06125.

[45] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep neural
networks with pruning, trained quantization and huffman coding,” 2016,
arXiv:1510.00149.

[46] A. Krizhevsky, V. Nair, and G. Hinton, “Cifar-10,” Canadian Institute for Advanced
Research. [Online]. Available: http://www.cs.toronto.edu/∼kriz/cifar.html

[47] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Ng, “Reading digits in
natural images with unsupervised feature learning,” in NIPS Workshop Deep
Learning and Unsupervised Feature Learning, 2011, [Online]. Available:
http://ufldl.stanford.edu/housenumbers.

[48] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to
document recognition,” 1998, pp. 2278–2324.

[49] Q. Qin, J. Ren, J. Yu, H. Wang, L. Gao, J. Zheng, Y. Feng, J. Fang, and Z. Wang,
“To compress, or not to compress: Characterizing deep learning model compression
for embedded inference,” in 2018 IEEE Int. Conf. Parallel Distributed Processing
with Applications, Ubiquitous Computing Communications, Big Data Cloud
Computing, Social Computing Networking, Sustainable Computing Communications,
2018, pp. 729–736.

[50] L. Liu, H. Li, and M. Gruteser, “Edge assisted real-time object detection for mobile
augmented reality,” in 25th Annual Int. Conf. Mobile Computing and Networking,
2019.

[51] T. Braud, P. Zhou, J. Kangasharju, and P. Hui, “Multipath computation offloading
for mobile augmented reality,” in 2020 IEEE Int. Conf. Pervasive Computing and
Communications, 2020, pp. 1–10.

[52] G. Ananthanarayanan, P. Bahl, P. Bodı́k, K. Chintalapudi, M. Philipose,
L. Ravindranath, and S. Sinha, “Real-time video analytics: The killer app for edge

41

http://www.cs.toronto.edu/~kriz/cifar.html

computing,” in IEEE Computer, 2017, [Online]. Available:
https://www.microsoft.com/en-us/research/publication/real-time-video-analytics-
killer-app-edge-computing/.

42

	Faster Depth Estimation for Situational Awareness on Urban Streets
	Recommended Citation

	List of Tables
	List of Figures
	Introduction
	Motivating Application

	Related Works
	Self-Supervised Monocular Depth Estimation
	Small and Efficient Convolutional Neural Networks
	Neural Network Introspection
	Quantizing Neural Networks

	Edge Performance Optimization on Deep Learning for Depth Estimation
	Network Architecture for Baseline Training
	Using Efficient Convolutional Neural Network for Encoder

	Channel Pruning with Sparsity
	Channel Selection
	Network Reconstruction

	8-Bit Static Quantization

	Experiments
	Datasets and Training
	Implementation Details
	KITTI Results
	Cityscapes Results
	Ablation Study

	Discussions
	Proposed Metrics
	Future Work
	Conclusion
	Literature Cited

