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ABSTRACT 

ENVIRONMENTAL INFLUENCES ON LARGE DAILY WILDFIRE GROWTH IN 
CALIFORNIA 

by Holt S. Hanley 

 Wildfires have become a major environmental, social, and economic problem in 

California. The consequences can be especially detrimental when they exhibit behavior like 

very large daily growth (an individual fire burning >10,000 acres over a 24-hour period). 

Environmental conditions influencing the risk of large daily growth include weather 

variables such as temperature, wind, relative humidity, and precipitation; fuel variables such 

as type, loading, availability, and moisture content; as well as topographic variables such as 

slope, aspect, elevation, and shape. However, there remains great uncertainty in the 

importance of these variables relative to each other and the existence of any threshold values 

in these variables. Our study applied random forest modeling using multivariate and high 

spatiotemporal data for 16,013 wildfire days in California from 2003 to 2020 to determine 

feature importance for the task of predicting whether a fire would burn >10,000 acres over a 

24-hour period. Shapely Additive Explanations indicate that 100-hour dead fuel moisture, 

maximum daily air temperature, and soil moisture provide the highest predictive power for 

large daily growth. Additionally, our study identifies thresholds where the probability of 

large daily growth significantly increases. These thresholds include a 100-hour dead fuel 

moisture value of <10%, a maximum air temperature of >75 F, and a 0-10 cm soil moisture 

of <12%. Finally, we establish the number of days per year that these thresholds are being 

crossed has increased substantially over the last four decades.   
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1. Introduction 

 The destructive nature of wildfire has become a major environmental crisis in California. 

Since 2000, fires in California have destroyed thousands of structures, cost billions of dollars 

through damages and suppression efforts, and taken hundreds of lives (National Interagency 

Fire Center 2021). Additionally, the crisis has been accelerating due to increases in wildfire 

frequency, severity, and size with nine out of ten of the largest wildfires in the Cal Fire 

record (dating back to 1932) occurring within the last decade (Littell et al 2009, Miller & 

Safford 2012, Dennison et al 2014). Although there are many contributing causes to the crisis 

including antecedent forest management practices and expansion into the wildland-urban 

interface, our study focused on better understanding key environmental factors so decision-

makers and first responders can better anticipate and forecast the potential for explosive fire 

growth.  

1.1. Wildfire factors 

 The three major categories influencing wildfires are illustrated in the fire behavior 

triangle and consist of fuel, weather, and topography (National Park Service 2021). Fuels are 

a crucial driver of wildfire and can be characterized by type, loading, availability, and 

moisture content (Parks et al 2014). For example, low fuel moisture promotes fire growth 

because more energy can go towards combustion rather than evaporation (Pyne et al 1996). 

This process can be directly linked with weather variables like temperature, humidity, wind, 

and precipitation, although these features play several roles in determining the rate of fire 

spread. Such as, wind can increase convective heat transfer, determine the direction of 

spread, and carry firebrands to create spot fires (National Wildfire Coordinating Group 
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2006).  Both wind and fuel conditions can be exacerbated by the slope, aspect, elevation, and 

shape of topography. For example, steeper slopes can lead to faster fire growth due to the 

convective and radiant preheating of fuels enhanced by flame tilting and upslope winds 

(National Wildfire Coordinating Group 2006). While many of these relationships are well 

documented, comparing individual factors against acres burned leads to surprisingly small 

correlations (Potter and McEvoy 2021). The interactions between variables are a crucial 

element of wildfire, which is why machine learning has come forward as a practical approach 

due to its ability to capture nonlinear and interactive relationships between multiple causal 

factors. 

1.2. Machine learning 

 Machine learning is a valuable tool for analyzing the critical drivers of wildfire. 

Techniques such as artificial neural networks, random forest models, and extreme gradient 

boosting algorithms have been used to predict numerous components of wildfire, including 

burn severity, ignition probability, and estimated acres burned (Cortez and Morais 2007, 

Maeda et al 2009, Ozbayoglu and Bozer 2011, Satir et al 2016, Elia et al 2020, Huang et al 

2020, Wang et al 2021). For example, Wang et al (2021) built an extreme gradient boosting 

model incorporating meteorological, land‐surface, and socioeconomic variables to predict 

monthly burned area over the contiguous United States with an interobserver agreement 

(IoA) of 0.97. Huang et al (2020) developed a random forest model to classify burn severity 

categories in California’s northern coastal mountains with an accuracy of 79%. Elia et al 

(2020) estimated the probability of wildfire occurrence in the Mediterranean using an 

artificial neural network with a Receiver Operating Characteristic (ROC) Area Under the 
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Curve (AUC) value of 0.78. Our study trained a random forest model to predict large daily 

wildfire growth from the California/Oregon border through Los Angeles County with an 

AUC score of 0.831. Although machine learning models have been used to predict various 

wildfire components with a high degree of accuracy, a drawback is the “black-box” nature of 

the procedure since it is not clear how the model is interpreting the data to create its 

predictions. However, Shapley Additive Explanations (SHAP) discussed below, have 

recently come forward to ease this concern.  

1.3. Shapley and LOWESS 

 Shapley values originated in 1953 in the field of game theory. More recently, this 

approach has become a useful technique that allows researchers to peek behind the curtain of 

machine learning models to better understand how input data is interpreted to create a 

prediction (Wang et al 2021). Shapley values can be used to rank the feature importance of 

the variables, identify the percentage of the model that relies on each individual factor, and 

explain how those factors correlate to the prediction itself.  

 Our study combines information from SHAPs with Locally Weighted Scatterplot 

Smoothing (LOWESS) to identify the key thresholds where the model tends to change its 

prediction from a fire-day with small growth to one with large growth. Furthermore, the 

number of days per year these thresholds are exceeded can be examined over time to identify 

trends in the conditions conducive to large fire growth. 

1.4. Trends 

 Over the last few decades, there has been a trend toward increased fire danger in 

California. Warming temperatures and increased vapor pressure deficit have enhanced fuel 
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aridity and promoted wildfire activity throughout the Southwest (Abatzoglou and Williams 

2016, Williams et al 2019). Fuel aridity and burned area have also been enhanced due to 

decreased summer precipitation and earlier spring seasons (Westerling 2016, Holden et al 

2018). Overall, the fire season in California appears to be getting hotter, drier, and longer. 

Since our study revealed thresholds in environmental conditions where extreme growth 

becomes much more likely, we investigate trends in the frequency of days crossing these 

thresholds.  

1.5. Summary 

 This study utilized high-resolution fuel, weather, topography, and fire datasets along with 

a machine learning model to predict whether a given fire will burn greater than 10,000 acres 

over a 24-hour period. More specifically, we utilized a random forest model, SHAPs, and 

LOWESS to examine crucial wildfire factors to identify the rank order, relationship, and key 

thresholds crossed in the prediction of large daily growth. Once key thresholds were 

established, our study analyzed how many days per year these values were exceeded and any 

trends over the last four decades. Our analysis contributes another steppingstone in the use of 

machine learning for wildfire prediction and provides valuable insights that can be applied in 

further research and wildfire operation decisions. 
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2. Data and Methods 

2.1. Study area 

 Our study focused on the portion of California extending from the Oregon border through 

Los Angeles County (Figure 1A). California has a Mediterranean climate, which means most 

of its rainfall occurs in the winter, while summer conditions are predominantly hot and dry. 

This climate regime is a significant factor in California’s high fire danger because warm 

temperatures and low relative humidity are combined with critically dry fuels. California also 

experiences recurring droughts. It is significant to note that the timeframe of this study 

(2003-2020) takes place during the driest 22-year period (2000-2021) since at least 800 

(Williams et al 2022). Live fuels are often stressed during these exceptionally dry periods, 

promoting disease and pest outbreaks. Dry, weakened, or dead vegetation is an integral 

component of the biomass that drives wildfire in California. Forested areas mainly occur in 

the higher elevations, including the Coast Ranges closest to the Pacific, the Klamath 

Mountains in the NW portion of the state, the Cascade Range in the NE, and the Sierra 

Nevada in the East. Grasslands can be found in the lower elevations of the North Bay, 

Sacramento Valley, San Joaquin Valley, Central Coast, and Southern California. 

2.2. Fire data 

 The fire activity dataset utilized for this study was prepared by Sonoma Technology Inc. 

The dataset was primarily produced using the 1-km resolution MODIS fire product combined 

with a fire detection algorithm and other sources, including state and national incident 

databases. The final fire product includes the date, time, location, daily growth, and total 

acreage burned for all fires detected by MODIS between 2003 and 2020. Our study utilized  
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daily growth for all fires from 2003 to 2020, where data was available. This dataset consisted 

of 16,013 24-hour growth incidents derived from 10,872 individual fires. There were 70 large 

incidents in the grass fuel type, 62 in brush, and 266 in timber. 

2.3. Fuel, weather, and topography data 

 We used the well-known fire behavior triangle as the foundation for selecting wildfire 

predictors. The three sides of the fire behavior triangle consist of fuel, weather, and 

topography. This study’s baseline random forest model was built using three variables for 

each side. Soil moisture, 100-hour dead fuel moisture, and chamise live fuel moisture were 

used to represent the impact of fuel on wildfire. Soil moisture came from a 2-km Weather 

Research and Forecasting (WRF) reanalysis, where hourly values were compiled into daily 

averages for the grid box matching the fire’s latitude and longitude at the time of ignition. 

The dataset containing 100-hour dead fuel moisture was developed based on the Nelson fuel 

model, while the live fuel moisture - chamise values were produced using a machine learning 

framework (Nelson 2000, Carlson et al 2007). Like soil moisture, the weather and 

topography variables were obtained from the 2-km WRF reanalysis. The variables 

representing weather’s impact on wildfire were maximum daily air temperature (max air 

temperature), minimum daily relative humidity (min relative humidity), and mean daily wind 

speed (wind speed). These specific weather variables were selected to coincide with the 

conventional wisdom that fire weather is synonymous with 'hot-dry-windy' conditions. Min 

relative humidity and max air temperature were used instead of their daily means because 

they were found to have better predictive power. The topography side of the fire behavior 

triangle was represented by slope, elevation, and terrain ruggedness. Slope was derived using 
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the difference in elevation between adjacent grid boxes, while the WRF variable, VAR_SSO 

(variance of subgrid-scale orography), was used for terrain ruggedness.  

2.4. Random forest model 

 The random forest model in this study used fuel, weather, and topography data (with the 

time-variant variables spanning 2003-2020) to predict whether a fire would burn >10,000 

acres over a 24-hour period. The classification split of 10,000 acres was chosen to fulfill the 

primary goal of this research, which was to identify the key factors leading to extreme daily 

growth of wildfires. However, the conclusions of this study are not particularly sensitive to 

the specific split chosen. The hyperparameters of the model were selected using a grid 

search, including a “max depth” of 15, a “minimum samples leaf” of one, a “minimum 

samples split” of five, and a “number of estimators” of 100. Model performance was assessed 

using the ROC AUC test method, as this is one of the most common and reliable ways to 

estimate predictive power. The model used a 70/30 train-test split percentage. To prevent 

data leakage, the last 30 percent of the data in time was used for testing. This shows how the 

model would have performed operationally over the last few years. 

2.5. Shapley values, LOWESS, and trend analysis 

 After the random forest model was trained and tested, the SHAP method and LOWESS 

were applied to increase model transparency. The SHAP method was used to rank the 

features in the order of their contribution to the model’s predictive power and show whether 

the variables were positively or negatively correlated with large fire growth. LOWESS was 

then applied to better visualize variable correlations and identify threshold values at which 

the model began predicting large fire growth for each individual variable. With these two 
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methods combined, we can determine the most important features contributing to large fire 

growth and identify the point where that growth becomes more likely. The number of days 

per year this point, or threshold, is exceeded can then be analyzed to establish whether the 

conditions conducive to large fire growth have become more common in California over the 

last four decades. Long-range trends were identified using the gridMET dataset consisting of 

daily high-spatial-resolution (4-km) surface data from 1980 to 2020 (Climatology Lab 2022). 
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3. Results 

3.1. Model results and feature importance 

 The baseline model for this study consists of three key drivers for each side of the fire 

behavior triangle. One way to visualize the performance of a model is a ROC curve. ROC 

curves plot the false positive rate on the x-axis against the true positive rate on the y-axis to 

illustrate the model’s ability to distinguish between classes. An AUC <0.5 shows no 

predictive power, 0.5-0.7 is generally considered poor, 0.7-0.8 is acceptable, 0.8-0.9 is 

excellent, and >0.9 is outstanding (Hosmer et al 2013). According to these standards, our 

model has excellent predictive power with an AUC score of 0.831  

(Figure 2A). This result indicates that the features within our model can be reliably utilized to 

forecast wildfire behavior. 

 A Shap plot is a machine learning interpretation technique that illustrates how the factors 

in a model influence the prediction. Figure 2B is a Shapley summary plot showing both the 

order of feature importance and the association between the variables and large fire growth. 

Each dot represents a fire-day. Higher SHAP values are associated with an increased 

probability of large daily growth. Where higher SHAP values are associated with higher 

feature values (red color), there is a positive correlation between that feature and the 

probability of large daily growth. For example, as the maximum daily air temperature 

increases, large fire growth becomes more likely. Conversely, as the values for 100-hour 

dead fuel moisture increase, the model generates fewer large fire growth predictions. 

Analyzing the list further shows correlations identified by the model are in line with a priori 

expectations. 
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Figure 2. Results for the primary random forest model, which predicts whether a fire will 
burn less than or greater than 10,000 acres over a 24-hour period using three variables from 
each side of the fire behavior triangle. (A) ROC curve showing model performance by 
calculating the area under the curve. (B) Shapley summary plot illustrating feature 
importance and variable correlation. The red color indicates high variable correlation values; 
thus, gradients from blue on the left to red on the right indicate a positive correlation with 
large daily wildfire growth. (C) Shapley waterfall plot indicating variable importance by 
illustrating the composition and cumulative ratios. 

 A Shapley waterfall plot provides further insight into feature importance (Figure 2C). 

The blue bars represent the percentage of the model each variable is responsible for 

(composition ratio), while the blue line illustrates the cumulative model percentage. For 

example, 100-hour dead fuel moisture makes up ~18% of the model, while the top three 

features combined account for ~50%.  

 We are focused on daily growth, but it is important to note that features may have 

different relative contributions at different timescales. For example, wind speed would likely 

provide greater predictive power if we conducted our analysis at the hourly timescale. 
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3.2. Histograms for the top variable and three fire weather features 

 Figure 3 illustrates how feature values differ for small and large fire growth days. The 

figure consists of normalized histogram plots for the top variable in terms of feature 

importance for our model (100-hour dead fuel moisture) as well as the three weather 

variables. Our study chose to take a close look at the weather features for two main reasons. 

First, weather variables change far more rapidly than fuel or topography variables, so they 

have greater importance in assessing and forecasting dynamic fire behavior. Second, 

evaluating the histogram plots for these variables potentially explains the model’s order of 

feature importance. The histogram plot for max air temperature (#2 feature importance) 

shows a significant separation between the values either above or below 10,000 acres burned 

(Figure 3B). Min relative humidity, which is #6 in feature importance, shows moderate 

separation, while wind speed, which is last in feature importance, shows a minimal 

discrepancy between the two curves (Figures 3C and 3D). The random forest model utilized 

these differences during training, partially explaining why max air temperature has higher 

predictive power than wind speed. The threshold line was derived from the Shapley plots 

below and is examined further in the subsequent section. 

3.3. Shapley plots for the top variable and three fire weather features 

 Shapley dependence plots illustrate the correlation between the variables and the model’s 

prediction of large fire growth (Figure 4). Each blue dot represents a fire-day. Positive SHAP 

values (dots above the 0.00 line) indicate that that feature value (X-axis) pushed the model 

towards predicting large growth for that fire incident. In contrast, negative SHAP values 

indicate that that feature value pushed the model towards predicting small growth for that 
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Figure 3. Histograms for the top variables in terms of feature importance ((A) 100-hour 
dead fuel moisture) as well as the three fire weather variables ((B) max air temperature, (C) 
min relative humidity, and (D) wind speed). Fire incidents within the 2-km WRF dataset are 
split based on whether 24-hour wildfire growth was less than or greater than 10,000 acres. 
Fire incidents <10,000 acres are shown in blue, while incidents >10,000 acres are shown in 
orange. Histograms are each normalized to have unit area (<10,000 growth occurrences 
were 38 times as frequent as >10,000 occurrences). Threshold values are derived from 
model results. 

incident. The greater the SHAP value is above or below zero signifies the model’s 

confidence in its prediction. For example, as min relative humidity gets lower, the model has 

higher confidence in large fire growth occurring (Figure 4C). Interestingly, the model 

becomes less confident of large fire growth at the extremes of the curves where 100-hour 

dead fuel moisture nears 5%, and max air temperature rises above 100 F (Figures 4A and 

4B). One possible explanation for this unexpected result is that the model learns that  
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Figure 4. Shapley dependence plots illustrating the association between the variables and 
the model’s prediction of large fire growth. Variables include the top variable in terms of 
feature importance ((A) 100-hour dead fuel moisture) as well as the three fire weather 
variables ((B) max air temperature, (C) min relative humidity, and (D) wind speed). Blue 
dots represent individual fire incident predictions, while the orange line is derived using 
Locally Weighted Scatterplot Smoothing. The threshold line indicates the point where the 
variable’s value flips its contribution to the model prediction. 

exceptionally hot and dry conditions are associated with slightly smaller probabilities for 

large growth because these conditions tend to occur over sparsely vegetated (desert) regions. 

 The threshold line indicates the point where the model switches between small and large 

daily wildfire growth predictions. Knowing the exact point at which extreme fire behavior 

becomes more likely is useful for wildfire operations and forecasting. These points include 

fuel thresholds of <10% 100-hr dead fuel moisture, <70% live fuel moisture - chamise, and 

<12% soil moisture; weather thresholds of >75 F max air temperature, <17% min relative 



 

15 

humidity, and >7 mph wind speed; and topographic thresholds of >883 terrain ruggedness, 

3°< slope <11°, and 453 m< elevation <1,889 m. To our knowledge, most of these thresholds 

are being identified for the first time, although previous research corroborates the threshold 

found for live fuel moisture - chamise. Dennison et al (2008) arrived at the conclusion that 

most large fires occurred below 71%, while a study dating back to 1967 suggested that fire 

behavior transitions at a chamise live fuel moisture value of 70% (Pirsko and Green 1967). 

3.4. Trend maps for the top variable and three fire weather features 

 Given that the threshold value represents the point at which large fire growth becomes 

more likely, it is important to analyze trends in the occurrence of these conditions. If max air 

temperature above 75 F leads to a higher probability of >10,000 acres burned over a 24-hour 

period, it is valuable to know how many days per year that threshold has been met and 

exceeded. Furthermore, by examining the trends in the occurrence of these thresholds, we 

can provide further understanding as to why wildfire activity has increased in California over 

recent decades. Evidence for this explanation can be seen in the trend maps for 100-hour 

dead fuel moisture and min relative humidity, where almost all of California has seen an 

increase in the number of days per year where the threshold for low moisture has been met 

(Figures 5A and 5C). While the trends for max air temperature and wind speed are not as 

large, conditions are getting warmer and windier in critical fire danger areas such as Napa 

County, Butte County, the Sierra, and the Santa Ana area in Southern California (Figures 5B 

and 5D).  
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Figure 5. Maps illustrating the trends in the annual number of days crossing thresholds for 
(A) 100-hour dead fuel moisture, (B) max air temperature, (C) min relative humidity, and (D) 
wind speed. The red color indicates an increase in the number of days crossing thresholds per 
year, while the blue represents a decrease. Trends were identified using the 4-km gridMET 
dataset from 1980 to 2020 (Climatology Lab 2022). Threshold values are derived from model 
results. 
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3.5. Mean trends for the top variable and three fire weather features 

 Similar conclusions can be drawn when we look at the trend in the domain average 

annual number of days where the variable thresholds for large fire growth have been met and 

exceeded from 1980 to 2020 (Figure 6). There appears to be a slight trend toward warmer 

and windier conditions, with the number of days the threshold has been met for wind speed 

increasing by ~5 days and for max air temperature by ~10 (Figures 6B and 6D). A much 

clearer trend can be seen in our moisture values, with min relative humidity increasing by 

~40 days in the last 40 years and 100-hour dead fuel moisture increasing by ~50 days 

(Figures 6C and 6A).  

 In summary, the most crucial variable for predicting large fire growth is 100-hour dead 

fuel moisture. Machine learning tells us that the threshold at which 100-hour dead fuel 

moisture leads to an increased probability of >10,000 acres being burned over a 24-hour 

period is around 10%. Throughout almost all of California, the number of days this threshold 

has been met has increased, growing from an average of ~125 days/year in 1980 to ~175 

days/year in 2020. This partially explains why large fire growth has become more common 

in California over recent decades. 



 

18 

 
Figure 6. Plots illustrating the trends in the annual number of days crossing thresholds for 
(A) 100-hour dead fuel moisture, (B) max air temperature, (C) min relative humidity, and 
(D) wind speed. Trends were identified using the 4-km gridMET dataset from 1980 to 
2020 (Climatology Lab 2022). Threshold values are derived from model results. 
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4. Additional Experiments 

4.1. Experiment 1 – Random forest vs. logistic regression 

 Having a model with predictive power allows us to run experiments that provide further 

insight into the environmental influences on large daily wildfire growth. For the first 

experiment, our study compared the baseline random forest model against a logistic 

regression model using the same features (Figure 7). This was done to test how allowing 

components to interact nonlinearly affects predictive power. The results show that although 

the logistic regression model had a fair AUC of 0.759, the random forest model had more 

skill in predicting large fire growth with an excellent AUC of 0.831. This result indicates the 

importance of using an approach that can capture nonlinear and interactive relationships 

when predicting wildfire behavior. 

 
Figure 7. ROC curves comparing the primary random forest model to logistic regression. 
(A) This is the ROC curve for the primary random forest model previously discussed 
throughout this paper. (B) This curve utilizes the same nine variables as the primary model, 
but with a logistic regression algorithm as opposed to a random forest. 

4.2. Experiment 2 – Logistic regression with fire weather indices 

 In the second experiment, three logistic regression models were built using three of the 

most commonly used fire weather indices: Sharples Fire Weather Index (FWI), Fosberg FWI, 
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and Hot-Dry-Windy. This test was done to see if large fire growth is better predicted using 

the traditional fire weather indices where fire danger is represented using a mathematical 

formula, or using a random forest model where the variables are individually inputted and 

machine learning is used to derive the relationships leading to extreme fire behavior. 

Surprisingly, the fire weather indices had poor performance, with a maximum AUC of only 

0.608 for the Hot-Dry-Windy model (Figure 8B). Considering these indices are widely used 

for wildfire management, it is necessary to compare these results against the excellent 

predictive power of the random forest model. Our model’s AUC of 0.831 not only supports 

the idea that machine learning has great potential in the future of wildfire forecasting but also 

makes the case that it is the approach we should already be utilizing today. 

 
Figure 8. ROC curves for three logistic regression models built using the (A) Sharples Fire 
Weather Index, (B) Fosberg Fire Weather Index, and (C) Hot-Dry-Windy. The three fire 
weather indices were derived using the 2-km WRF dataset and the corresponding formulas.  

4.3. Experiment 3 – Index substitution for weather and fuel features 

 For the third experiment, our study substituted the weather and fuel features with some of 

the leading fire weather and fuel indices. This was done to test whether the model performed 

better using the established representations of the weather and fuel components or the 

individual features themselves. The indices were derived using the 2-km WRF dataset and 

the corresponding formulas, while the 4-km gridMET dataset (Climatology Lab 2022) was 
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used for Energy Release Component. In the first test, the weather and fuel features were 

removed from the primary model and replaced with the Sharples FWI and the Sharples Fuel 

Moisture Index (Figure 9A). Although this received a fair AUC of 0.788, this is decreased 

performance compared to the baseline model. A similar result was seen in the second test, 

where the fuel features were replaced by Energy Release Component, and Hot-Dry-Windy 

replaced the weather features (Figure 9B). Although this model failed to outperform the 

baseline, it proved to be the top-performing index model with an AUC of 0.809. Energy 

Release Component was used again in the third test, but with the Fosberg FWI in place for 

the weather features (Figure 9C). This model had an acceptable AUC of 0.792. Interestingly, 

Energy Release Component was the most useful feature in this model by a significant 

amount, accounting for over 50% of the model’s performance. These results provide further 

evidence that allowing a machine learning model to uncover the relationships between 

individual variables provides greater predictive power than an index approach. 

4.4. Experiment 4 - Grass, brush, and timber models 

 In the fourth experiment, the model was separated into the three major fuel categories: 

grass, brush, and timber, as it is well known that fire behavior can be fundamentally different 

among these different fuels. Fuel categories were derived from the 2-km WRF reanalysis 

using the land-use variable, LU_INDEX. As expected, the order of feature importance varies 

among the various fuel types. To maximize model comparability, 100-hr dead fuel moisture 

was included in the grass model as a general representation of antecedent aridity. 100-hour 

dead fuel moisture ended up being the top feature for the grass model, followed by terrain 
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ruggedness, min relative humidity, and elevation (Figure 10A). Topography also provided a 

large amount of predictive power for the brush model, with slope and terrain ruggedness 

accounting for ~45% of the model’s performance (Figure 10B). Conversely, the topography 

variables were last on the list of feature importance for the timber model, collectively adding 

only ~8% to the model’s predictive power (Figure 10C). The most surprising results were the 

AUC values achieved for each model. As a reminder, the fire incidents used in all models 

undergo a 70/30 train-test split percentage. The baseline model was trained and tested on 

16,013 fire incidents and achieved an AUC score of 0.831. Given that machine learning 

models are highly dependent on the amount of data utilized in the model’s training, it was 

assumed that separating the model into three separate fuel categories would reduce model 

performance. On the contrary, the grass model, trained and tested on 4,439 fire incidents, had 

an AUC score of 0.857. The brush model, based on only 2,213 incidents, achieved an 

excellent AUC score of 0.850. Finally, the timber model, trained and tested on 8,806 

incidents, saw an AUC score of 0.824. This tells us that the differences in fire behavior 

between various fuel types outweigh the value of utilizing more training data in our dataset. 

4.5. Experiment 5 – Eliminating sides of the fire behavior triangle  

 4.5.1. Experiment 5.a. We retrained the baseline model in the fifth experiment, but with 

individual sides of the fire behavior triangle removed from the list of features. This process 

identifies the relative importance of fuel, weather, and topography by analyzing the loss in 

the model’s predictive power when individual sides of the triangle are eliminated. The AUC  
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dropped to 0.790 when the weather variables were removed, 0.819 when the fuel variables 

were removed, and 0.793 when the topography variables were removed (Figure 11). This 

indicates that the weather variables we used provide the greatest predictive power. 

 4.5.2. Experiment 5.b. A second way of testing if weather provides the largest amount of 

predictive power is to retrain the model, but with only one side of the fire behavior triangle 

included at a time. When fuels were the only variables utilized, the AUC dropped to 0.736, 

and when only topography variables were inputted, the AUC decreased to 0.676. Amazingly, 

when max air temperature, min relative humidity, and wind speed were the only features 

used to predict fire growth >10,000 acres over a 24-hour period, the model achieved a nearly 

excellent AUC score of 0.791. Overall, weather variables are the most important features for 

predicting large fire growth, but the highest predictive power is produced by representing the 

interconnected characteristics of the fire behavior triangle. 
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5. Conclusion 

 This study utilized high-resolution fuel, weather, topography, and wildfire datasets to 

train a random forest model to predict whether an incident will burn greater than 10,000 acres 

over a 24-hour period. SHAPs and LOWESS were used to analyze model results. We found 

that 100-hour dead fuel moisture provides the greatest power for predicting large fire growth, 

followed by max air temperature and soil moisture. Our study also identified the exact points 

at which contributors to wildfire begin to promote large daily growth. These thresholds 

include a 100-hour dead fuel moisture <10%, max air temperature >75 F, min relative 

humidity <17%, and daily mean wind speed >7 mph. The number of days per year these 

thresholds are being crossed has increased for all four variables. On average, the annual 

threshold exceeding days for 100-hour dead fuel moisture, identified as the most significant 

contributor to large fire growth, has increased by ~50 days in the last 40 years.  

 In summary, our study determined the most important features contributing to large fire 

growth, identified the thresholds where that growth becomes more likely, and uncovered 

trends in the occurrence of threshold exceeding days. Additionally, our experimental findings 

provide evidence for the advantages of machine learning compared to traditional approaches, 

the significance of fuel type in predicting fire behavior, and the idea that weather variables 

are the most critical component of wildfire forecasting. Although these results can already be 

utilized in fields such as wildfire operations and management, more research is needed to 

further understand the complex relationships between environmental influences and large 

daily wildfire growth.  
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