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ABSTRACT 

ACOUSTIC CLOAK DESIGN USING GENERATIVE MODELING AND 

REINFORCEMENT LEARNING 

by Linwei Zhuo 

Metamaterials are engineered composites that can exhibit acoustic, electromagnetic, 

elasto-dynamic and mechanical properties that are not found in natural materials Due to the 

complexity of the target objective functions, it is difficult to find the globally optimized 

solutions in the inverse design of metameterials. This thesis proposes and outlines two 

model, a gradient-based optimization method combined with generative networks (2D-

GLOnets) and a reinforcement learning (RL) model, that can find the optimized metamaterial 

structures across a wide range of parameters. By perturbing the positions of each cylindrical 

scatterer in a planar configuration, 2D-GLOnets and the RL model with Deep Deterministic 

Policy Gradients (DDPG) are developed to design 2D (two-dimensional) broadband acoustic 

cloaking devices at the desired range of wavenumbers. Both models were implemented using 

PyTorch, Python libraries, and MATLAB engine. The numerical results are presented and 

compared with the optimal values produced by fmincon algorithms to verify the validation of 

our approaches. Our results indicated that both methods reduced the total scattering cross 

section by 17% to 90% compared to the initial conditions. 
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1 INTRODUCTION 

Multiple scattering theory studies the wave propagation and scattering in complex media. 

It is widely used in many engineering applications, such as vibration isolation, acoustic 

insulation, and sound focusing. For example, a vibration isolation system can attenuated 

undesired vibrations transmitted from road to the vehicle seats [1]. A sonic crystal barrier 

reduces sound in the target frequency range [2]. In work [3], acoustic Luneburg lens, i.e. a 

gradient index lens, focuses the incoming wave to achieve a maximum value on the edge of 

the lens. An acoustic cloaking device uses the multiple scattering theory to control and guide 

the incident waves around the objects. Such acoustic cloaking device can make an object 

invisible to the incoming wave [4]. There are two types of cloak: active and passive. A passive 

cloaking device utilizes metamaterials to direct wave energy around the object [5]. An active 

cloaking device uses sources to produce an active field that interferes the incoming wave [6]. 

The main challenge for cloaking design is to improve the accuracy and efficiency of the 

optimized cloaking devices at a broad range of the frequencies and letting it to operate at 

different frequencies. It is difficult and challenging to design and optimize the scattering 

devices because their target responses are complex and their objective functions are highly 

nonlinear and multimodal, which have multiple extremum and saddle points. There are many 

approaches that have been broadly applied in the inverse design of cloak, such as stochastic 

algorithms [7]–[9], gradients optimized algorithm [10] and topology optimization [11]. 

However, they are local optimizers, which can potentially stuck in an unfavorable local 

optimum. The performances of their final solutions heavily rely on the choice of the initial 

distribution. Devices tend to have better performance if their initial distributions happen to be 
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located in a desirable design space. Searching for the globally optima is difficult when the 

problem is complicated. Current methods [7]–[11] work well for designing simple acoustic 

cloak at a single wavenumber, but they struggle to optimize larger numbers of cloak devices 

at a broadband of wavenumbers. Therefore, a robust global optimizer that can handle 

complicated problems is highly demanded in the engineering industry and academy. 

Recently, a variety of new methods have been developed for the inverse design of 

metamaterials. With the study of various new approaches, we identified the validation and 

potential of deep learning (DL) in the optimization problems. In our research, we develop a 

novel approach on the inverse design of metamaterials by using DL, RL, and generative 

modeling. A new proposed optimizer, namely GLOnet, is based on DCGAN can produce 

highly efficient optimized 1D (one-dimensional) metagrating over a wide range of 

parameters [12]. We generalized 1D GLOnets [12] to develop 2D-GLOnets with 

reparameterization for 2D acoustic problems at various range of wavenumbers and 

parameters. Compared to GLOnets, we make our model more general as it can be applied to 

constrained optimization problems and can be extended and deployed to different inverse 

designs of metamaterials, such as implementation of braodband acoustic, elastodynamic, 

optical, and electromagnetic meta-devices. Furthermore, our proposed generative model can 

generate highly efficient cloaking devices that can outperform the conventionally at certain 

scenarios. Our second model is RL model implemented with Deep Deterministic Policy 

Gradients (DDPG). Our RL model consists of an actor and a critic. The actor network 

outputs actions that continuously move the scatterers in our acoustic environment. The critic 

evaluates the value for each action selected by the actor. We trained our RL model to 
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discover the optimal policy that can search for the acoustic devices with improved cloaking 

efficiency with a set of given initial conditions at the desired range of wavenumbers. Our 

findings clearly show that 2D-GLOnets and the RL model can sufficiently optimize a 

metamaterial device and serve as a potential global optimizer. 
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2 LITERATURE REVIEW 

In this section, we will review the various optimization methods deployed in the inverse 

design of metamaterial and the new trend of using DL, RL, and generative modeling in 

metamaterial optimization. 

2.1 Optimization Methods in Metamaterial Design 

Review of literature shows that stochastic algorithms [7]–[9], gradient-based optimization 

[4], [13], and topology optimization [14], [15] are the popular approaches used in the inverse 

design of metamaterials. The former methods, such as genetic algorithms [16] and simulated 

annealing [17], are gradient-free optimizers, but their converge time increases as the 

complexity of the model grows and the number of design parameters increases. The topology 

optimization [14], [15] utilizes numerical gradients to optimize materials with a given set of 

conditions. The gradient-based optimization method [4], [18] use many local optimizers to 

search for the possible solutions. These optimizers are either local optimizer or require great 

amount of computational resources to search for the global solutions. 

2.2 Deep Learning in Metamaterial Design 

2.2.1 Generative Modeling for Metamaterials 

In recent years, we are experiencing the innovation driven by DL in computer science, 

physics, engineering, and art. Amoung various DL techniques, Generative Adversarial 

Network (GAN) becomes a promising method to generate new data with specific 

requirements. GAN is an architecture of DL model designed by Ian GoodFellow et al [19] in 

2014. The main purpose of this network is to generate a new data set with the same statistics 

as the given training set. This network is widely used to generate fake faces [20] and repair 
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images [21]. Over the years of development, researchers have adopted and modified the 

architecture of GAN to apply on various problems [12], [22]–[30]. 

Gurbuz et al. [22] combined GAN and finite element simulation to design acoustic 

metamaterials for broadband sound insulation. Challapalli et al. [27] proposed a new inverse 

design framework using GAN to improve 40-120% of lattice unit cells’ load carry capacity. 

Blanchard-Dionne and Martin [24] used GAN to search for the optimal geometry of a 2D 

optical cloak for specific property. A modified version of GAN called WGAN (Wasserstein 

GAN), which minimizes an approximation of the Earth-Mover’s distance (EM) instead of the 

Jensen-Shannon divergence, is also applied to optimize metamaterial devices. Han et al. [31] 

proposed conditional WGAN to improve prediction performance of Deep Neural Network 

for protein solubility. An et al. [26] used conditional WGAN to design metasurfaces that 

produce double focusing effect. 

Another modification of GAN is DCGAN (Deep Convolutional GAN) which replaces the 

pooling layers with the strided convolution and uses batch normalization layers in both 

generator and discriminator. A novel optimizer based on DCGAN, GLOnets, [12] can 

produce highly efficient optimized devices over a wide range of parameter. Hodge et al. [23] 

used DCGAN to degisn tensorial metasurfaces for radio-frequency (RF) applications. There 

are also different types GAN that are modified to apply to specific types of inverse design 

problems. For example, Hou et al. [28] used partially Conditional GAN (pCGAN) to predict 

the performance of sets of metamaterials by inputting the desired spectrum. Nobari et al. [29] 

used Performance Conditioned Diverse (PcDGAN) to design airfoils and enhance the 

conditioning likelihood by 69% in an airfoil generation task than the original GAN. Khodaee 
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et al. [32] used AIGAN/GAN to design terahertz bandpass filters. Variation Autoenconder 

(VAE) is also a type of generative modeling. It aims to learn the complicated data distribution 

and maximize the probability of generating new data in the same distribution. Similar to 

GAN, VAE is also a novel and promising optimization approach in inverse design. Wang et 

al. [30] used a variational autoencoder (VAE) and a regressor to design heterogeneous 

metamaterial systems to obtain the desired distortion behaviour. Tran et al. [33] used VAE to 

discover the optimal configurations with given TSCS at a discrete set of wavenumbers. 

2.2.2 Reinforcement Learning in Inverse Design of Metamaterials 

RL is a branch of machine learning concerned with how agent learn to take actions in an 

environment in order to find the optimal policy. Many reseachers used deep RL to increase 

the efficiency of electromagnetic properties in metamaterial design. Sajedian et al. [34] used 

a double deep Q-learning network (DDQN) to find geometric design and material properties 

to improve the transmission efficiency of metasurface holograms, a type of photonic 

structure. Their agent was able to enhance the the transmission efficiency of from 17% to 

32%. Sajedian et al. [35] also applied DDQN to enhance the color generation of dielectric 

reflective color filters. Shah et al. [36] developed a RL model with DDPG and DDQN to 

design cloaking devices. 

RL can also discover a new strategy to optimize materials’ structures that have desired 

performance in aerodynamic and fluid mechanics. For example, Kim et al. [37] used deep RL 

to optimize airfoil shape with multiple predefined conditions for various flow conditions. 

Viquerat et al. [38] used deep RL to discover a generic shape optimization strategy in fluid 

mechanics and aerodynamics without any prior knowledge. Other researcher have modified 
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and developed RL to further improve its capability in solving various types of inverse design 

problems. One of them is to combine RL with GAN. For example, Guimaraes et al. [39] 

introduced a GAN and RL based method (ORGAN) that moves generation towards desirable 

regions. Putin et al. [40] introduced a method that combines RL and GAN to design of novel 

small-molecule organic structures. 

We observed the functionalities that GAN and RL offered in designing inverse material 

and optimizing engineering structures. Currently, stochastic algorithms, gradient-based 

optimization, and topology optimization are insufficient to find the optimal cloaking devices 

that can suppress the scattering response at desired operating range of frequencies or certain 

conditions. Therefore, we want to leverage the power of DL into our 2D acoustic inverse 

design problems. 
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3 PRELIMINARIES 

3.1 Acoustic Multiple Scattering 

We consider the multiple scattering in the context of the two dimensional acoustic time 

harmonic wave equation. The governing equation for the acoustic pressure p(x), x ∈ R2, is 

the Helmholtz equation [4]: 

 ∇2 p + k2 p = 0, (3.1) 

where k = ω/c is the wavenumber, c is the acoustic speed, and ω is the frequency. The total 

field p(x) is defined as the sum of incident pinc and scattered psc pressure fields: 

 p = pinc + psc. (3.2) 

The incident field is a plane wave which propagates from left to right and interacts with a 

given configuration of M separate scatterers. We consider circularly cylindrical scatterers, 

which may be either rigid scatterers. 

3.1.1 Total Scattering Cross Section (TSCS) 

Let σ denote the total scattering cross section (TSCS) defined as [4]: 

 σ (r jm, ka) = − 
4 
ℜa†b, (3.3) 

where ℜ stands for real part of complex variable, a† is the complex conjugate transpose 

(Hermitian), the vectors a and b are defined by Equation 3.4 in Ref. [4], 
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  (3.4) 

and r jm = r j − rm is a position vector of multipole Om with respect to multipole Oj depicted 

in Figure 3.1. 

 
Figure 3.1 An arbitrary planar 

configuration of M scatterers Sm 

with a radius am, m = 1, M. 

Our objective is to minimize the root mean square (RMS) of a set of TSCSs over some 

range of normalized wavenumbers kia (i = 1, 2, ..., Nk), which is denoted as σRMS: 

  (3.5) 

where j and m = 1, 2, . . . M, and M is the total number of scatterrers. 
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For a single scatterer, σ is independent of the position of the scatterer. For a pair of 

scatterers, it depends on the relative positions ri j, i.e σ = σ ri j = σ ri − r j , where the vectors 

ri, r j define the scatterer position vectors as shown in Figure 3.1. 

3.1.2 Gradients of TSCS 

Amirkulova and Norris [4] provided the gradients with respect to the scatterer positions 

as: 

  (3.6) 

where a j is the radius of j-th cylindrical scatterer. By substituting Equation 3.3 into Equation 

3.6, the gradient vector can be defined as [4]: 

  (3.7) 

 

where the interaction matrix X established the coupling between each scatterer of the 

configuration as; 

  (3.8) 

For the RMS of a set of TSCSs over a range of kia, broadband gradient vectors q j with 

respect to position vectors r j in a closed-form is depicted as [4]: 



 

11 

  (3.9) 

where j = 1, . . . M and m = 1, . . . M. 

Thus, the explicit form of broadband gradients q j are derived in terms of the individual 

single frequency gradients s j [4] by substituting Equation 3.5 into Equation 3.9: 

  (3.10) 

where s j(kia) are evaluated at normalized wavenumbers kia (i = 1, 2, ..., Nk) by using 

Equation 3.7. 

3.2 Acoustic Cloak by Inverse Design 

3.2.1 Problem Formulation 

In our acoustic mutiple scattering problems, we only consider the scattering by planar 

configuration of rigid cylinders embedded in an external water medium. Our objective is to 

find the optimal configurations with the lowest σRMS by adjusting the positions of the 

scatterers. We discuss two different cases in this paper. Case 1 is that all the scatterers are free 

to move inside the circular region (see Figure 4.3). Case 2 is that three cylinders are fixed 

inside the annulus and are being cloaked by adding scatterers within the cloaking annulus 

region (see Figure 4.9). Both cases use Equation 3.5 and Equation 3.9 to evaluate the metrics 

of the optimized configurations. 

3.2.2 Geometric Constraints 

The constrained optimization problem involves bounds and nonlinear constraints.The 

nonlinear constraints on a configuration of scatterers are as follows: 
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1. The positions of cylinders are located within a regions with a radius Rout and outside 

of an inner annulus with a radius Rin. Thus, 

 Rin < rk < Rout (3.11) 

where rk = |rk| and rk are the k-th scatterer’s position vector as described in Figure 3.1. 

2. In order to avoid overlapping, the distances between the centers of cylinders are 

constrained by 

 |ri − r j| > 2a + δ (3.12) 

where ri and r j are the position vectors of i-th and j-th scatterer, a is the radius of the 

scatterer, and δ is the minimal allowed distance between the scatterers. 
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4 GENERATIVE MODELING AND GRADIENT-BASED OPTIMIZATION 

4.1 2D-GLOnets Architecture and Overview 

The architecture of 2D-GLOnets consists of 8 fully connected networks and uses the 

LeakyReLu for all activation functions, except for the output layer, which uses the tanh 

activation function. Since the tanh function always output values between -1 to 1, we simply 

multiply the output by a scale to adjust the range of output. The input is a vector of random 

numbers sampled from a noise and has a size of [K × M], where K is the number of outputs in 

a batch and M corresponds to the total number of scatterers. The output size is the same as the 

input size. Figure 4.1 illustrates the process of 2D-GLOnets. A noise vector Z is sampled 

from the normal Gaussian distribution. The generator takes the noise vector Z as an input and 

outputs a batch of K unconstrained devices X , where X is in the form: 

  (4.1) 

The vertical and horizontal positions of k-th device x with respect to the origin is denoted as 

xk and yk, respectively. 
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∂ w 

∂ w 

 
Figure 4.1 Flowchart of 2D-GLOnets with reparameterization. 

A method called reparamerization enforces the geometric constraints imposed on 

cyliders’ positions as described by Equation 3.11 and Equation 3.12, and transforms the input 

X into the constrained devices X ∗. The multiple scattering solver [41] denoted as MS Solver 

computes σRMS and ∂σRMS . The loss function defined in Equation 4.9 calculates the gradients 

∂σRMS from back propagation and updates the generator’s weights w. 

4.2 Reparameterization 
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One method to impose geometric constrain is to add a penalty term in the loss function 

[42]. This method helps to move devices toward desired design region where geometric 

constrains are enforced. However, the penalization approach does not assure the 

enforcement. Therefore, we want to introduce a new method to apply geometric constrains, 

i.e. 2D reparameterization. The reparameterization denoted as ε(x(k)) is a method that uses a 

mapping function to transform the illegal devices into constrained design space [43]. Let’s 

define the boundary state, B(rk) as: 

  (4.2) 

Similarly, we define the collision state, C(ri, r j) as: 

  (4.3) 

During the process, the position vectors of each device will be updated if they violate the 

geometric constrains as described in Algorithm 1. This cycle will continues until all 

constrains are satisfied eventually and return the constrained devices X ∗. 

4.3 Loss Function 

We frame our objective of the optimization as maximizing the probability of generating 

the globally optimized device in design space S. Following Jiang and Fan [44], we define the 

probability function as: 
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  (4.4) 

The derivative of the δ function is nearly zero, thus the δ function can be expressed as a 

Gaussian approximation [45]: 

  (4.5) 

By substituting Equation 4.4 into Equation 4.5 and leaving β as a tunable parameter, we 

obtain the new equation as: 

  (4.6) 

where β is an important parameter that stabilizing the model with a finite batch size during 

training. Note that Pφ (X |σRMS(X ) < σRMSmin) = 0. Furthermore, we want to find the argument 

that give us the maximum probability of generating device. Hence, we can approximate 

Equation 4.6 with an exponential equation [44] as: 

  (4.7) 

The objective function depends on σRMSmin, which is unknown. An ideal acoustic device 

has a σRMS of zero. We can assume that the global minimum σRMSmin is equal to zero. In 

practice, it is difficult to evaluate the whole design space S. Jiang and Fan [44] suggested to 

sample a batches of K devices  from Pφ . 
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∂X 

We note that the σRMS of device X is calculated using in-home built multiple scattering 

solver [41] (MS Solver) implemented on MATLAB, such that σRMS is not directly 

differentiable for backpropagation. To overcome this issue, our MATLAB solver [41] 

computes the gradients with respect to the position for device X : g = ∂σRMS as Equation 3.10. 

We note that q j in Equation 3.10 is calculated for single scatterer and g is a list of the q j for a 

device with multiple scatterers. Finally, we can use the objective function and gradients to 

define our loss function L = L(X, g, σRMS) such that minimizing L is equivalent to minimize 

the objective function. With this definition, L must satisfy  and is 

defined as: 

  (4.8) 

We also need to include the reparamerization process to impose the geometric constraints 

in the loss function. Note that X ∗(k) is the constrained device and g(k) =  ∂σ . 

Thus, we can further define our final loss function as: 

  (4.9) 

4.4 Training Process 
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The training process of 2D-GLOnets is shown in Algorithm 2. First, a noise vector Z is 

sampled from a normal distributed noise and passed into the generator Gφ , which outputs a 

batches of K unconstrained devices X . The reparameterization maps the illegal devices X into 

feasible devices X ∗. The in-built MATLAB solver [41] computes σRMS as Equation 3.5 and 

the corresponding gradients gε with respect to the constrained devices X ∗ as Equation 3.9. 

Adaptive Moment Estimation (ADAM) is used to update the generator’s weights. The hyper-

parameters of 2D-GLOnets can be refer to Appendix A.1. 

4.5 Model Evaluation for 2D-GLOnets 

The fmincon is a gradient-based optimization solver that aims to search for the minimum 

of an nonlinear multi-variable function [46]. To validate the performance of 2D-GLOnets, we 

evaluated σRMS of the devices discovered by 2D-GLOnets and compared the results with 

fmincon obtained using the state-of-the-art algorithms, such as sequential quadratic (SQP), 

SQP-legacy, Interior-point, and Active-set. Since our 2D-GLOnets generated 10 devices at 

each batch, we considered 10 initial configurations distributed over the range of the possible 

design space with MultiStarts. MultiStarts is a MATLAB solver that allows fmincon to start 

with multiple initial configurations. Both fmincon and 2D-GLOnets ran 10 attempts and we 
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chose the results with the lowest σRMS for each methods. The simulations were performed 

remotely on Dell Workstation for 2 ≤ M ≤ 6 and Docker system for 12 ≤ M ≤ 24. We note that 

2D-GLOnets use random noise as input to generate the devices. The initial configurations 

were randomly generated and only used by fmincon. Hence, the evaluation of 2D-GLOnets 

and the initial scatterers positions might not be accurate as 2D-GLOnets did not start from the 

same initial configurations. 

4.6 Results for 2D-GLOnets 

In this section, we present the results obtained from 2D-GLOnets and fmincon. 2D-

GLOnets were implemented using PyTorch by calling MATLAB engines from Python 

libraries, where ka is the non-dimensional wavenumber and σRMS is the root mean square of 

the total scattering cross section at a range of wavenumbers. Table 4.1 illustrates the 

performance of the devices generated by 2D-GLOnet and fmincon for M = 2, 3, 4, 5, 6, 12, 

18, and 24 at 0.35 ≤ ka ≤ 0.45. According to Table 4.1, 2D-GLOnets generated devices with 

a σRMS of 0.2202, 0.3031, 0.3196, 0.3366, 0.3048, 0.6396, 0.9998, and 1.7093 for M = 2, 3, 4, 

5, 6, 12, 18, and 24, respectively. 2D-GLOnets and all fmincon’s algorithm yielded the same 

σRMS for 2 ≤ M ≤ 6, except for SQP-legacy, which generated a slightly higher σRMS for M = 6. 

Compared to the initial conditions, 2D-GLOnets reduced the σRMS by 75.72%, 78.02%, 

73.08%, 86.51%, 88.97%, 82.31%, 84.60%, and 80.31% for M = 2, 3, 4, 5, 6, 12, 18, and 24, 

respectively; however, 2D-GLOnets produced 44.2%, 33.4%, and 71.7% higher σRMS than the 

Active-set for M = 12, 18, and 24, respectively. 
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Table 4.1 Comparison of σRMS between Initial Conditions (ICs), 2D-GLOnets (GLO), 

Active-set (A-set), Interior-point (INT), SQP, and SQP-legacy (SQPL) at 0.35 ≤ ka ≤ 

0.45. 

0.35 ≤ ka ≤ 0.45 

 M = 2 M = 3 M = 4 M = 5 M = 6 M = 12 M = 18 M = 24 

ICs 0.9071 1.3792 1.8173 2.4958 2.7629 3.6149 6.4931 8.6799 

GLO 0.2202 0.3031 0.3196 0.3366 0.3048 0.6396 0.9998 1.7093 

A-set 0.2202 0.3031 0.3196 0.3366 0.3048 0.4436 0.7493 0.9954 

INT 0.2202 0.3031 0.3196 0.3366 0.3048 0.5568 0.8404 1.0953 

SQP 0.2202 0.3031 0.3196 0.3366 0.3048 0.4436 0.8367 1.0164 

SQPL 0.2202 0.3031 0.3196 0.3366 0.3671 0.4436 0.7663 1.1138 

 

The performance of 2D-GLOnets and fmincon is visualized by plotting the variation of σ 

versus ka at the desired range of wavenumbers ka ∈ [0.35, 0.45] as shown in Figure 4.2. For M 

= 2, 3, 4, and 5, 2D-GLOnets have same σ as fmincon at every ka from 0.35 to 0.45 as shown 

in Figure 4.2(a) to (d). For M = 6, 2D-GLOnets have lower σ than SQP-legacy at 0.36 ≤ ka ≤ 

0.45 as shown in Figure 4.2(e). For M = 12, 2D-GLOnets have a smaller σ than Interior point 

at 0.35 ≤ ka ≤ 0.36 as shown in Figure 4.2(f). For M = 18, 2D-GLOnets have the same σRMS as 

fmincon at 0.375 ≤ ka ≤ 0.385 as shown in Figure 4.2(g). For M = 24, 2D-GLOnets greatly 

suppressed σ at all wavenumbers from 0.35 to 0.45 compared to the initial conditions as 

shown in Figure 4.2(h). Furthermore, the devices generated by fmincon and 2D-GLOnets 

exhibit a small fluctuate or increment in σ as ka increases compared to the initial conditions. 
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Figure 4.2 Variation of the total scattering cross section σ versus non-dimensional 

wavenumber ka at 0.35 ≤ ka ≤ 0.45. 

Figure 4.3 displays the devices generated by 2D-GLOnets and fmincon for M = 6, 12, and 

24 at 0.35 ≤ ka ≤ 0.45. 2D-GLOnets, Active-set, Interior-point, and SQP yielded the similar 

pattern for M = 6 as shown in Figure 4.3(a). Active-set, SQP, and SQP-legacy agreed on the 

optimal configuration for M = 12, whereas 2D-GLOnets and Interior-point produced different 

results with a higher σRMS as shown in Figure 4.3(b). The devices produced by 2D-GLOnets 

and fmincon are different for M = 24 as shown in Figure 4.3(c). It indicates that 2D-GLOnets 

and fmincon got stuck in different local optima. Furthermore, 2D-GLOnets found the 

strategy to suppress σRMS at 0.35 ≤ ka ≤ 0.45, which is aligning scatterers horizontally at 

multiple rows. 2D-GLOnets’ strategy is similar to fmincon’s strategy as shown in Figure 4.3. 

The configurations for M = 2, 3, 4, 5, and 18 are shown in Appendix B.1. 
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(a) M=6 

 

(b) M=12 

 

(c) M=24 

Figure 4.3 Optimized configurations generated by Active-set (red), Interior-

point (yellow), SQP (green), SQP-legacy (blue), and 2D-GLOnets (pink) at 

0.3 ≤ ka ≤ 0.45. The initial configurations are shown in cyan.  

Table 4.2 shows the σRMS of the devices discovered by 2D-GLOnets and fmincon for M 

= 2, 3, 4, 5, 6, 12, 18, and 24 at 1.00 ≤ ka ≤ 1.20. Table 4.2 indicates that 2D-GLOnets output 

solutions with a σRMS of 2.7046, 3.0670, 2.8006, 3.3107, 3.7822, 8.2325, 10.8137, and 

11.7097 for M = 2, 3, 4, 5, 6, 12, 18, and 24 at 1.00 ≤ ka ≤ 1.20, respectively. 2D-GLOnets 

have the same results as fmincon for M = 2 and 3 and produced lower σRMS than Active-set and 

SQP-legacy for M = 4, 5, and 6. 2D-GLOnets also outperformed Interior-point for M = 5 and 

6, and defeated SQP for M = 6. However, 2D-GLOnets started to struggle to minimize TSCS 

for M = 12, 18, and 24. All fmincon algorithms generated better devices than 2D-GLOnets 

for M = 12, 18, and 24. Compared to the initial results of TSCS for the initial configurations,  
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Table 4.2 Comparison of σRMS between fmincon and 2D-GLOnets at 1.00 ≤ ka ≤ 1.20 

1.00 ≤ ka ≤ 1.20 

 M = 2 M = 3 M = 4 M = 5 M = 6 M = 12 M = 18 M = 24 

ICs 4.0284 6.0960 9.5414 10.8903 13.3013 23.1923 31.9988 36.6813 

GLO 2.7046 3.0670 2.8006 3.3107 3.7822 8.2353 10.8137 11.7097 

A-Set 2.7046 3.0670 3.8500 3.8828 4.0718 6.6489 7.9815 9.8253 

INT 2.7046 3.0670 2.8006 3.3107 3.8692 5.7501 7.4785 8.2731 

SQP 2.7046 3.0670 2.8006 3.8828 3.8442 6.9226 8.0514 9.5335 

SQPL 2.7046 3.0670 4.2610 3.8828 4.4393 5.8122 8.4721 9.5325 

 

2D-GLOnets decreased the σRMS by 32.86%, 49.69%, 70.65%, 69.60%, 71.57%, 64.49%, 

66.21%, and 68.08% for M = 2, 3, 4, 5, 6, 12, 18, and 24, respectively. 

The variation of σ versus ka for the solutions generated by 2D-GLOnets and fmincon is 

shown in Figure 4.4. Figure 4.4 shows that 2D-GLOnets can sufficiently suppress σ at higher 

range of wavenumbers ka ∈ [1, 1.2]. For M = 2 and 3, all algorithms have the same 

performance. For M = 4 and 5, Active-set and SQP-legacy got trapped in the same local 

minimums and their σ are higher than 2D-GLOnets in every ka from 1.0 to 1.2. For M ≥ 6, all 

algorithms found different solutions as the objective function exhibits many local optimal 

and difficult to optimize. Some results might have lower σ than other algorithms in certain 

range of ka, but have higher σ at other range as shown in Figure 4.4(e) to (h). For example, 

2D-GLOnets has the smallest σ from 1.04 ≤ ka ≤ 1.11 for M = 6, but SQP has the smallest σ 

from 1.12 ≤ ka ≤ 1.18. 
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Figure 4.4 Variation of the total scattering cross section, σ , versus non-

dimensional wavenumber ka at 1.00 ≤ ka ≤ 1.20. 

Figure 4.5 displays the devices generated by 2D-GLOnets and fmincon for M = 6, 12, and 

24 at 1.00 ≤ ka ≤ 1.20. For M = 6, 2D-GLOnets outperformed all fmincon algorithms and 

found the unique patterns with the lowest σRMS of 3.7822 as shown in Figure 4.3(a). For M = 

18 and 24, the configurations have no obvious patterns. SQP-legacy’s and 2D-GLOnets’ 

scatterers did not aligned or formed a particular shape. Instead, they were scattered over the 

design space as shown in 4(b) and (c). However, their configurations produced by 2D-

GLOnets show a great reduction of σRMS compared to the initial configurations. In contrast, 

Interior-point placed scatterers vertically at multiple columns as it has the lowest σRMS of 

7.4785 and 8.2731 for M = 12 and 24, respectively. The configurations for M = 2, 3, 4, 5, and 

18 are shown in Appendix B.2. 
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(a) M=6 

 

(b) M=12 

 

(c) M=24 

Figure 4.5 Optimal configurations of rigid cylinders discovered by Active-set, 

Interior-point, SQP, SQP-legacy, and 2D-GLOnets at 1.00 ≤ ka ≤ 1.20 and 

their initial configurations. 

Figure 4.6 illustrates the comparison between the non-optimized, SQP’s, and 2D-GLOnets’ 

device for the total pressure field. Figure 4.6(a) displays the real part of acoustic total pressure 

distribution denoted as Rep and Figure 4.6(b) depicts the absolute part of the total pressure 

denoted as |p|. The incident wave propagates from left to the right horizontally and causes 

the interaction between the scatterers and the scattering response as shown in the total 

pressure field. The high pressure is colored in yellow and the low pressure is colored in dark 

blue as shown in Figure 4.6(a). The initial configuration has many high pressure areas in front 

of the scatterers in Figure 4.6(a). SQP performed better at suppressing the Rep on the front of  
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(a) The real part of total acoustic pressure field (Rep) 

 

(b) The absolute part of total pressure (|p|) 

Figure 4.6 The real part of total acoustic pressure field and the absolute total 

pressure at a normalized wavenumber ka = 1.20 for the initial configurations 

(Left), SQP (Middle), and 2D-GLOnets (Right) shown in Figure 4.5(a). 

the scatterers and 2D-GLOnets better reduced the Rep on the rear of the cylinders 

configuration as shown in Figure 4.6(a). According to Figure 4.6(b), the initial configuration 

shows many regions with high |p| in the front of the scatterers. The configurations discovered 

by SQP and 2D-GLOnets both suppressed these high pressure regions as shown in Figure 

4.6(b). 

The performance of optimized devices were evaluated over a larger range of 

wavenumbers from 0.10 to 2.00 as shown in Figure 4.7. Note that the devices were optimized 

only at the target range ka ∈ [0.35, 0.45] and ka ∈ [1.00, 1.20], but performance is evaluated at  
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Figure 4.7 Variation of σRMS versus non-dimensional wavenumber ka for the 

optimized configurations when M = 6 rigid cylinders at 0.10 ≤ ka ≤ 2.00. 

a larger range ka ∈ [0.1, 2]. The devices optimized at 0.35 ≤ ka ≤ 0.45 by all algorithms can 

further suppress σRMS in larger ka compared to the non-optimized device as shown in Figure 

4.7(a). SQP-legacy outperformed the other four algorithms for ka ≤ 0.2 and 1.00 ≤ ka ≤ 2.00 

as shown in Figure 4.7(a). Figure 4.7(b) demonstrates that the devices optimized at 1.00 ≤ ka 

≤ 1.20 by all algorithms greatly suppressed σRMS at the desired range of wavenumbers ka ∈ 

[1.00, 1.20] compared to the non-optimized device. When outside of the desired range, 2D-

GLOnets’ optimized device has a better suppression of σ compared to fmincon at 1.60 ≤ ka ≤ 

2.00 as shown in Figure 4.7(b). Additionally, 2D-GLOnets produced lower σ than Active-

set, Interior-point, and SQP-legacy at 0.48 ≤ ka ≤ 0.8, although all optimized devices have 

higher σ than the initial configurations as shown in Figure 4.7(b). 

Next, we will discuss Case 2 where the initial configuration has three scatterers Mfixed 

fixed inside an annulus region. We can suppress the σRMS by adding multiple scatterers on the 

proper positions around the fixed scatterers. According to Table 4.3, the initial configuration 

had a σRMS of 4.9400. 2D-GLOnets reduced the σRMS to 0.7790, 0.7057, 0.8405, 1.1327, and 

1.9610 by adding 2, 4, 6, 12, and 18 scatterers, respectively. 2D-GLOnets have the best  
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Table 4.3 Comparison of σRMS between fmincon and 2D-GLOnets with three fixed 

scatterers at 0.35 ≤ ka ≤ 0.45 

Mfixed = 3 and 0.35 ≤ ka ≤ 0.45 

Algorithm Mo =0 Mo =2 Mo =4 Mo =6 Mo =12 Mo =18 Mo =24 

2D-GLOnets 2.4199 0.7790 0.7057 0.8405 1.1327 1.9610 2.8835 

Active-set 2.4199 0.7790 0.8411 0.8974 1.1868 1.3097 1.7458 

Interior-point 2.4199 0.7790 1.0211 1.0614 1.2680 1.6557 1.8105 

SQP 2.4199 0.7790 0.8132 1.0329 1.1763 1.3139 1.7783 

SQP-legacy 2.4199 0.7790 0.7050 0.8411 1.2037 1.5596 1.8725 

 

results among all the algorithms for Mo = 6 and 12, the second lowest σRMS for Mo = 4, and 

same results as fmincon for Mo = 2; For Mo = 18, 2D-GLOnets have higher σRMS than 

fmincon; For Mo = 24, 2D-GLOnets failed to reduce the σRMS compared to the initial 

configurations as it produced higher σRMS. 

Figure 4.8 shows the performance of 2D-GLOnets and fmincon with three fixed scatterer 

inside the annulus at every ka from 0.35 to 0.45. 2D-GLOnets have lower σ at every ka from 

0.35 to 0.45 compared to the initial configurations for Mo = 2, 4, 6, and 12 as shown in Figure 

4.8(a), (b), (c), and (d). For Mo = 2, all algorithms have the same curve as they yielded the 

same σRMS as shown in Figure 4.8(a). For Mo = 4, the curve of 2D-GLOnets almost 

overlapped with SQP-legacy as they only have a small difference in σRMS and 2D-GLOnets 

defeat Active-set, Interior-point, and SQP in every ka from 0.36 to 0.45 as shown in Figure 

4.8(b); For Mo = 6, 2D-GLOnets have the lowest σ at 0.35 ≤ ka ≤ 0.36 while mantaining a 

relatively low σ at other ka as shown in Figure 4.8(c). For Mo = 12, 2D-GLOnets have the 

lowest σ at 0.425 ≤ ka ≤ 0.45 as shown in Figure 4.8(d). For Mo = 18 and 24, 2D-GLOnets do  
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Figure 4.8 Variation of σ versus non-dimensional wavenumber ka with three fixed 

scatterers at 0.35 ≤ ka ≤ 0.45. 

not sufficiently reduce the σ at every ka compared to the initial configurations as shown in 

Figure 4.8(e) and (f). 

Figure 4.9 displays the various configuration generated by 2D-GLOnets and fmincon with 

three fixed scatterers inside the annulus region for M = 6 and 12 at 0.35 ≤ ka ≤ 0.45. For Mo = 

6, 2D-GLOnets discovered the configuration with the smallest σRMS of 0.8405 as shown in 

Figure 4.9(a). Furthermore, SQP-legacy’s configuration with a σRMS of 0.8411 is different 

from 2D-GLOnets, but their σRMS have a small difference, showing that there are multiple 

local optima with a similar performance when we increase the number of scatterers. For Mo = 

12, 2D-GLOnets’ solution also have the smallest σRMS of 1.1327 and its configuration is 

different from fmincon as shown in Figure 4.9(b). We can see that 2D-GLOnets also learned 

to align the scatterers horizontally at multiple rows to suppress the scattering response when 

we added three fixed scatterers at the center. The configurations for Mo = 2, 4, 18, and 24 are 

shown in Appendix B.3. 
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(a) Mo =6 

 

(b) Mo =12 

Figure 4.9 Optimized configurations discovered by fmincon and 2D-GLOnets 

with three fixed rigid cylinders inside an annulus for Mo = 2, 6, and 12. 

Figure 4.10 shows the loss and σRMS versus epochs for Mo = 12 and 24. Unlike the 

traditional loss function where we want our loss as small as possible, we provided analytical 

gradients gε to guide our defined loss function defined in Equation 4.9 toward the ideal 

devices, which has zero σRMS and zero gradients. In other words, we want our loss function 

converges to zero. The loss functions for Mo = 12 and 24 were negatively large at the first 

epoch. They indicates that our gradients were also negatively large initially and the devices 

were far away from the optimal region. Hence, the gradients guided the devices rapidly 

toward the positive direction from epoch 0 to 10 as shown in Figure 4.10(a) and (c). In Figure 

4.10(b) and (d), there were a huge reduction in TSCS from epoch 0 to 20 as the loss function 

moves toward zero. In Figure 4.10(a), the loss function shows that the generator was 

searching for the optimal solution at a particular region and landed into another design region  
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Figure 4.10 Loss and σRMS versus epochs for Mo = 12 and 24 with three fixed 

scatterers at the center. 

as the loss suddenly dropped at epoch 40 and caused the TSCS increased at epoch 40 as 

shown in Figure 4.10(b).  

From epoch 60 to 150, the loss functions slowly converged to zero as the TSCS steady 

decreased to a local minimum as shown in Figure 4.10(a) and (b). Compared to the loss 

function for Mo = 12, the loss function converged faster and more steady to zero for Mo = 24. 

However, the TSCS rapidly decreased from epoch 0 to 60, but slowly decreased from epoch 

60 to 120 as shown in Figure 4.10(d). It is because there are many extremum points and 

saddle points when the number of scatterer is large. 
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According to Figure 4.10(c), the loss converged to zero at epoch 20 and remained close to 

zero toward to end of the epochs, which indicates that the generator reached the regions 

where the generated devices have very small gradients (i.e. the local optima). Because the loss 

is so small, the back propagation only slightly update the weights of the generator, which 

makes the generator hard to get out of the local optima. Therefore, the generator stuck in a 

local optima from epoch 40 to 120 and finally got out of the unwanted regions at epoch 120. 

However, it quickly fell into another local optima at epoch 125 as shown in Figure 4.10(d). 

The analytical gradients can guide the loss function shifts toward the optimal design space 

and reached the minimum points at the regions after exploring and examining many possible 

solutions, but it is difficult for the gradients to find the optimal solution when there are too 

many local optima. The loss function for Mo = 24 swiftly converged and get trapped in local 

optima too and caused the generator only examined the solutions in the undesirable design 

region. To have a good performance, our generator need to be examine the design space well. 



 

33 

5 DEEP REINFORCEMENT LEARNING MODEL 

In this section, we present our deep RL model which is capable of predicting the 

configuration with lower values of TSCS by adjusting positions of scatterers. The purpose of 

RL is to create a self-learning agent which interacts with an environment and finds an 

optimal policy through its own reward function and experience. An agent is an entity, which 

made of neural networks, selects actions and interacts with the environment, which represents 

a task or simulation [36]. As the agent outputs actions to the environment, it receives 

feedback from the environment and save them in a relay buffer. During the training process, 

the agent randomly selects a batch of data from the relay buffer and uses them to maximize its 

reward function. These process will continue in a cycle until an optimal policy is discovered. 

There are two branches of RL algorithms: Policy Gradients [47] and Q-learning [48]. 

These two methods represent the actions space differently in the environment. They are both 

enforced by the Markov Decision Process (MDP) described in [49, pp.47-71]. The MDP 

provides a mathematical framework for policy iteration and improvement. 

The environment has an initial state St. The agent selects an action At to interact with the 

environment and receives a reward Rt and a next state St+1 as shown in the Figure 5.1. This 

process is repeated until the environment satisfy the terminal state. resulting in an episode 

trajectory [49]: 

 S0, A0, R1, S1, A1, R2, S2, A2, R3, ... . (5.1) 
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Figure 5.1 Agent interacting with 

environment in a Markov Decision 

Process (MDP). 

In this setting, the goal of the agent is to maximize the sum of rewards obtained from an 

episode and can be defined as Gt [36]: 

 G t =̇ Rt+1 + Rt+2 + ... + RT (5.2) 

where T is the final time step and t is the current time step. In order to encourage the agent to 

find the optimized solution, we introduce a discount factor parameter γ, which values the 

future rewards [49]: 

  (5.3) 

The discounted sum of rewards Gt represents the value of the action taken in the state. We 

can use this reward function Gt to train the agent to estimate the value of each action. The 

Bellman optimality equation for Q∗ estimates the reward function of the optimal policy when 

actions are repeatedly applied as an update [49]: 

  (5.4) 

5.1 Deep Deterministic Policy Gradient 
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Deep Deterministic Policy Gradient (DDPG) is a model-free, actor-critic algorithm based 

on the deterministic policy gradient that allows the agent to operate over continuous action 

spaces [47]. We chose DDPG because a continuous action space better represents the 

possible solutions in our acoustic problem compared to a discrete action space. DDPG has 

four networks: actor, critic, target actor, and target critic. For our problem, the actor network 

takes the state from the environment and output 2M actions for M scatterers. One for the 

horizontal direction and the other one for the vertical direction. To prevent the scatterers 

from moving its position rapidly, we bound the action output to a reasonable range. The critic 

network is used to predict the Q-value for each state and action pairs. The target actor 

network takes the next state and output the next action. The target critic network is used to 

predict the next Q-values for each next state and next action pairs. The critic network will be 

trained to accurately predict the Q-values and the actor network will be trained to maximize 

the critic output. To train the target networks, we copy a portion of the parameters from the 

base networks using a soft update θ ′ ← τθ + (1 − τ)θ ′ as shown in Figure 5.2. The observation 

is (St, At, Rt, St+1, is Done). We define our reward function as Rt = −σRMS, where σRMS is defined 

in Equation 3.5. 

5.2 Environment 

In our recent RL model [36], our agent was able to discover the configuration which 

suppress σ and σRMS to a local minimum over a range of wave numbers for M ≤ 4. However, 

our agent struggled when we increased the number of scatterers to M ≥ 8. The issue with our 

original environment is that the configuration reverts back to its previous state when the 

geometric constrains are not satisfied. This causes the environment rejecting too many  
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Figure 5.2 Diagram of our DDPG agent interacting with the 

environment through adjusting scatterer position. 

actions when M is large. In this work, we propose to use a physics-based environment [50] 

which does not reject actions to overcome this issue. 

Our environment allow scatterers to move in both x and y direction as long as they satisfy 

the constrains. To make our environment behave like a real world, we will use Newton’s 

Second Law to define the equation of motions for all scatterers. Let’s define ri(t), vi(t), and 

ai(t) as the position, velocity, and acceleration vector of the i-th scatterer at the current time 

step t, respectively. We use Equation 4.2 and Equation 4.3 to represent the collision state. 

Note that 1 indicates collision and 0 indicates no collision. We also want to define ri,bound as 

the distance vector between i-th device and the boundary, and ri, j as the distance vector 

between i-th and j-th device. Thus, we can define the current force F(ri(t) acting on the 

scatterers as below: 
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 F(ri(t)) = B(ri(t)) · (ri,bound(t) · kw + cw · vi(t)) + C(ri(t), r j(t)) · ri, j · ki · vi(t). (5.5)  

where cw and kw are the contact stiffness and damping of the boundary, respectively and ki is 

the contact stiffness of i-th scatterer. Finally, we can sum all the forces to calculate the 

acceleration for each scatterers by using the equation of motions: 

  (5.6) 

where mi and ci are the mass and damping coefficient of the scatterers, respectively. Ai(t) is 

the actions or the forces selected by the agents to move the scatterers. By taking derivative of 

ai(t), we can obtain the velocity vi(t + 1) and position xi(t + 1) for the next time step. This 

cycle continues until we reached the termination state. 

5.3 Actor and Critic Networks 

In our model, the actor network consists of 2 fully connected layers with 128 neurons on 

each layer. The critic network has 8 fully connected layer with 128 neurons on each layers. 

Both networks apply ReLu as the activation function, but use tanh for the output layer. We 

also apply BatchNorm layer to all the layers to stabilize and normalize the input [51], except 

for the output layer. The learning rate for actor and critic networks are 0.0001 and 0.001, 

respectively. The noise scale starts with 1.2 and decays to 0.02 with 8000 steps [36]. The 

target networks will have the same architecture as the base networks. The parameters for the 

RL models are shown in Appendix A.2. 

5.4 Model Evaluation for Reinforcement Learning Model 
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To evaluate the performance of the RL models, we compared our obtained results with 

ones produced by fmincon’s SQP algorithm. Because both RL and fmincon are very sensitive 

to the initial points, we started the optimization process with the same initial configurations 

to ensure accurate performance evaluation. 

5.5 Results on Reinforcement Learning Model 

Table 5.1 shows the comparison of TSCS for the initial configurations, SQP, and the RL 

model. Table 5.1 displays that the RL model decreased σRMS to 0.5529, 0.5438, 0.8382, and 

1.4444 with the given initial configurations with a σRMS of 3.3380, 2.3788, 3.9437, and 

10.8117 for M = 6, 8, 10, and 12, respectively. Our RL model has no prior experience or 

knowledge about TSCS, but it is able to discover its own strategy to suppress σRMS for 

various numbers of scatterers. Table 5.1 also illustrates that SQP has better suppression than 

DDPG, especially for M = 10 and 12. However, our RL model works well for lower numbers 

of scatterers [36], we need further improvement and better parameter tuning for larger 

numbers of scatterers. 

Table 5.1 Comparison of TSCS for non-optimized 

device, the RL model and SQP at 0.35 ≤ ka ≤ 0.45 

Algorithm M = 6 M = 8 M = 10 M = 12 

Initial 3.3380 2.3788 3.9437 10.8117 

RL Model 0.5529 0.5438 0.8382 1.4444 

SQP 0.4468 0.3833 0.5845 0.5717 

 

Figure 5.3(a) shows the performance of the non-optimized device, SQP’s final device, 

and The RL model’s optimized device at 0.35 ≤ ka ≤ 0.45. The RL model achieves similar 

performance as SQP at 0.40 ≤ ka ≤ 0.45. However, SQP’s final configuration behaves a lower  
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Figure 5.3 The variation of σRMS versus non-dimensional wavenumber ka for 

optimized configurations generated by the RL model and SQP for M =6 at 0.35 ≤ 

ka ≤ 0.45 and the σRMS versus the numbers of epochs. 

σRMS at 0.35 ≤ ka ≤ 0.38 than the RL’s device. Figure 5.3(b) shows the σRMS discovered by the 

RL models versus epochs. Figure 5.3(b) presents that the RL model had a noisy convergence 

after the iteration of 8500 epochs. It indicates that our RL model still need to improve to 

achieve better and stable performance. 

Figure 5.4 depicts the total acoustic pressure field for M = 6 at the normalized 

wavenumber ka = 0.40. Figure 5.4 (a) and (b) shows the real and absolute part of the total 

pressure, respectively. The RL model’s device shows an overall reduction in the real part of 

the total pressure compared to the initial configuration, but there is a high pressure region 

presented between the scatterers as shown in Figure 5.4 (a). The RL model’s device also 

greatly suppress the scattering response on the front compared to the initial configurations as 

shown in Figure 5.4 (b) In contrast, SQP has a better suppression on the front and rear of the 

scatterers. Moreover, SQP does not have any high pressure regions in between the scatterers. 
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(a) The real part of total acoustic pressure field (Rep) 

 

(b) The absolute total pressure (|p|) 

Figure 5.4 The pressure field produced by the initial non-optimized 

configurations (Left), the configuration discoverd by SQP (Middle), and 

the configuration obtained by the RL model (Right) at ka = 0.40. 

Figure 5.5 displays the total pressure field of final configurations generated by the RL 

model and SQP as well as the initial configurations. Figure 5.5(a) is the initial configuration 

that SQP and the RL model optimized. Figure 5.5(b) illustrates that SQP grouped the 

scatterers to form a rhombus pattern. In contrast, RL mode divided six scatterers into two 

rows, two on the top row, and four on the bottom with an offset in the vertical direction as 

shown in Figure 5.5(c). Our 2D environment, where the scatterer are continuously moving 

and colliding with each other to avoid overlapping, can perfectly enforce the geometric 

constraints, but the collision between scatterers makes the RL model hard to closely align 

scatterers horizontally at multiple rows like 2D-GLOnets. Furthermore, this dynamic  
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≤ ≤ 

 
Figure 5.5 Final optimal configurations generated by SQP (green color) and the 

RL Model (pink color) at 0.35 ka 0.45 and M = 6. The non-optimized 

configuration is shown in cyan color. 

environment requires too many computation resources as it needs to constantly estimates the 

dynamics of each scatterers. A modified environment can help our RL model to discover 

better strategy to minimize the TSCS. Appendix C shows the optimal configurations 

discovered by RL models and SQP for M = 8, 10, and 12. 
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6 DISCUSSION 

In this thesis, we implemented two models to discover the optimal configurations with the 

reduced or minimized TSCS. The first one is the 2D-GLOnets and the second one is the RL 

model. 

6.1 2D-GLOnets Discussion 

Our developed 2D-GLOnets can generate the optimized configurations that can 

efficiently suppress the effect of plane wave for 0.35 ≤ ka ≤ 0.45 and 1.00 ≤ ka ≤ 1.20 by 

rearranging the positions of each scatterer. 2D-GLOnets found the optimal solutions for 2 ≤ 

M ≤ 6 at 0.35 ≤ 0.45 and for 2 ≤ M ≤ 6 at 1.00 ≤ ka ≤ 1.20, showing its ability to handle 

acoustic optimization for small numbers of scatterers at various range of wavenumbers. 2D-

GLOnets also proves its capability to outperform fmincon as it yielded better results for M = 

2, 6, and 12 with three fixed scatterers in the inner annulus. 

When the number of scatterers increases, 2D-GLOnets started to struggle to optimize the 

objective function because 2D-GLOnets is less stable than fmincon. Unlike fmincon, 2D-

GLOnets required a long iteration of parameters tuning. The performance of 2D-GLOnets 

fluctuates with the changes of parameters, especially for larger numbers of scatterers. In 

contrast, fmincon has robust and stable performance in optimizing nonlinear objective 

function with small dependence on the parameters. However, 2D-GLOnets is capable of 

outperforming fmincon if it is properly tuned. Additionally, we only use a batch size of 10 

because we do not have enough computation resources. If we can increase the batch size to 

100 or even larger number, we can better explore the design space and avoid the unfavorable 

local solutions. Moreover, our loss function quickly converged to zero when the gradients 
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were small or got trapped in local optima. We can modify the loss function to reduce the 

effect of gradients. For example, we can rescale the gradients such that the loss function will 

not be updated too rapidly, allowig the generator to further examine the design space before 

convegred to the minimum point. Furthermore, our results indicate that reparameterization 

guarantees the enforcement of geometric constraints and allows the generator to push the 

devices toward the favorable design regions. 

The optimized devices do not guarantee to have a good performance if they are outside 

the target range of wavenumbers. An optimized device can sufficiently suppress the σRMS at 

the given range of wavenumbers, but it might increase the σRMS at the other range of 

wavenumbers compared to the initial configurations. 

6.2 RL Model Discussion 

The RL model shows its ability to decrease σRMS for a given initial configuration. The RL 

model outperformed SQP at lower numbers of scatterers [36], but it did not perform better 

than SQP consider a larger number of scatterers. Moreover, the RL model takes more than 10 

hours to complete 8500 epochs for M = 6 on the Dell workstation and the result still did not 

converge well. Note that the computation time varies depend on the initialization. On the 

other hand, SQP takes less than 1 minutes to optimize 6 scatterers on the Dell workstation. 

2D-GLOnets requires about 30 minutes to run 150 epochs on the Dell workstation and 

converged to a better result compared to the RL model. 2D-GLOnets and SQP have better 

performance than the RL model in term of lower σRMS and the computation time. The RL 

model’s computation time and convergence took too longer, which makes the RL model 

difficult to tune the parameters when the number of scatterer is large. Our environment is the 
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cause of the long computation time as it repeatably computes the dynamics of the scatterers 

for a long iteration. Moreover, there are collisions between scatterers to avoid overlapping, 

but these behaviors are undesirable, which makes the scatterers difficult to align closely to 

each other as shown in Appendix B.1. One solution for this problem is to modify and transfer 

my reparameterization into a 2D environment. The reparameterization is an efficient and 

robust method for geometric constraints and it is a more suitable environment for our agent 

to interact with. Additionally, our reward function only includes the σRMS. We can include the 

analytical gradients as described in Equation 3.10 to guide our agent toward the optimal 

region in the reward function. 
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7 CONCLUSIONS 

An ideal acoustic device should have zero σRMS for a broad range of wavenumbers. 

Currently optimization methods are still inadequate to solve this complicated inverse design 

problems. In this thesis, we proposed two methods that have the potential to discover the 

optimal acoustic cloaking devices. The RL model is a doable approach, but its computation 

makes this approach impractical to implement. The RL model’s ability is undermined by the 

computation resources on the current computers (Dell remote workstation and Docker 

system). Improvement and modification are needed for the RL model to perform better in 

solving the multiple scattering problems. A better computation machine, environment, and 

reward function can enhance the performance of the RL model. 

On the other hand, 2D-GLOnets with reparametrization is capable of finding devices that 

can greatly suppress σRMS at various ranges of wavenumbers. This method transforms the 

illegal devices into the constrained design space in a manner that naturally enforces geometric 

requirements without adding a penalty term in the loss function. Unlike the original GLOnet 

model [12] which only can deal with 1D photonic problems, our model can handle 2D 

acoustic response taking into account the geometric constraints. Moreover, 2D-GLOnets has 

the capability to outperform fmincon, which makes it a promising approach for inverse 

design problems; however, 2D-GLOnets is still underdeveloped as it has poor performance 

for larger numbers of scatterers and less vulnerable to the parameters. A well-tunned 2D-

GLOnets will be a promising optimizer for acoustic cloaking problems and other 

matematerial design problems. Moreover, 2D-GLOnets will have a robust performance with a 

better exploration in the design space for a larger numbers of scatterers. A modified loss 
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function and a large batch size could enhance 2D-GLonets’ ability to examine the design 

space. 

Although 2D-GLOnets and the RL model do not perform well at a larger number of 

scatterers, further development and modification can make our model perform better for 

more complex and challenging problems. Moreover, our models provide valuable insights that 

inspire other researchers in this field to use DL to develop new optimization techniques that 

solve different types of engineering design problems. 

7.1 Future Work 

Future work for 2D-GLOnets should focus on larger numbers of scatterers. We need to 

make proper adjustment and modification on 2D-GLOnets to avoid the local optima when 

dealing with a large number of scatterers. We can also add more design parameters, such as 

materials, radius, and shape of the scatterers. Furthermore, we can apply this model to other 

types of material design problems, such as acoustic lens. One suggestion to improve our RL 

model is to use a high performance computation machine, so we can better tune the hyper 

parameters. Another suggestion is to combine the RL model and 2D-GLOnets [39], [40]. 2D-

GLOnets will be used to locate the potential optimal design regions and the RL model with a 

well-defined reward function and environment will be utilized to search for a better solution. 

The proposed generative modeling can be extended and employed in different design of 

metamaterials when physical gradients can be supplied to the model. 
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on Bézier scatterers,” Scientific Reports, vol. 8, p. 12924, Aug 2018. 

[10] S. Ruder, “An overview of gradient descent optimization algorithms,” 

https://doi.org/10.48550/arXiv.1609.04747, 2016. 

[11] O. Sigmund and K. Maute, “Topology optimization approaches,” Structural and 

Multidisciplinary Optimization, vol. 48, pp. 1031–1055, 2013. 

[12] J. Jiang and J. A. Fan, “Global optimization of dielectric metasurfaces using a physics-

driven neural network,” Nano Letters, vol. 19, pp. 5366–5372, Jul 2019. 

[13] P. Andersen, V. Henriquez, L. Sanchis, and J. Sánchez-Dehesa, “Design of multi-

directional acoustic cloaks using two-dimensional shape optimization and the boundary 



 

48 

element method,” in Proceedings of the23rd International Congress of Acoustics, pp. 

5600–5606, Department of Electrical Engineering, Acoustic Technology, Technical 

University of Denmark, 2019. 

[14] J. Andkjær and O. Sigmund, “Topology optimized low-contrast all-dielectric optical 

cloak,” Applied Physics Letters, vol. 98, p. 021112, Jan 2011. 

[15] M. P. Bendsoe and O. Sigmund, Topology Optimization: Theory, Methods, and 

Applications, Springer Science & Business Media, 2013. 

[16] S. Sivanandam and S. Deepa, “Genetic algorithms,” in Introduction to Genetic 

Algorithms, pp. 15–37, Springer, 2008. 

[17] P. J. Van Laarhoven and E. H. Aarts, “Simulated annealing,” in Simulated Annealing: 

Theory and Applications, pp. 7–15, Springer, 1987. 

[18] J. Rho and J. A. Fan, “Freeform metasurface design based on topology optimization,” 

MRS Bulletin, vol. 45, pp. 196–201, 2020. 

[19] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. 

Courville, and Y. Bengio, “Generative adversarial nets,” in NeurIPS Proceedings of 

Advances in Neural Information Processing Systems 27, pp. 1-9, 2014. 

[20] T. Karras, S. Laine, and T. Aila, “A style-based generator architecture for generative 

adversarial networks,” Cornell University, https://doi.org/10.48550/arXiv.1812.04948, 

2019. 

[21] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros,“Context encoders: 

Feature learning by inpainting,” Cornell University, https://doi.org/10.48550/arXiv. 

1604.07379, 2016. 

[22] C. Gurbuz, F. Kronowetter, C. Dietz, M. Eser, J. Schmid, and S. Marburg, “Generative 

adversarial networks for the design of acoustic metamaterials,” The Journal of the 

Acoustical Society of America, vol. 149, pp. 1162–1174, Feb 2021. 

[23] J. A. Hodge, K. V. Mishra, and A. I. Zaghloul, “Joint multi-layer gan-based design of 

tensorial rf metasurfaces,” in 2019 IEEE 29th International Workshop on Machine 

Learning for Signal Processing (MLSP), pp. 1–6, IEEE, 2019. 

[24] A.-P. Blanchard-Dionne and O. J. F. Martin, “Successive training of a generative 

adversarial network for the design of an optical cloak,” OSA Continuum, vol. 4, p. 87, 

Dec 2020. 



 

49 

[25] X. Han, Z. Fan, Z. Liu, C. Li, and L. J. Guo, “Inverse design of metasurface optical 

filters using deep neural network with high degrees of freedom,” InfoMat, vol. 3, pp. 

432-442, Jun 2020. 

[26] S. An, B. Zheng, H. Tang, M. Y. Shalaginov, L. Zhou, H. Li, M. Kang, K. A. 

Richardson, T. Gu, J. Hu, C. Fowler, and H. Zhang, “Multifunctional metasurface 

design with a generative adversarial network,” Advanced Optical Materials, vol. 9, p. 

2001433, Jan 2021. 

[27] A. Challapalli, D. Patel, and G. Li, “Inverse machine learning framework for 

optimizing lightweight metamaterials,” Materials & Design, vol. 208, p. 109937, 2021. 

[28] Z. Hou, P. Zhang, M. Ge, J. Li, T. Tang, J. Shen, and C. Li, “Metamaterial reverse 

multiple prediction method based on deep learning,” Nanomaterials, vol. 11, p. 2672, 

2021. 

[29] A. H. Nobari, W. Chen, and F. Ahmed, “PcDGAN: A continuous conditional diverse 

generative adversarial network for inverse design,” Cornell University, 

https://doi.org/10.48550/arXiv.2106.03620, 2021. 

[30] L. Wang, Y.-C. Chan, F. Ahmed, Z. Liu, P. Zhu, and W. Chen, “Deep generative 

modeling for mechanistic-based learning and design of metamaterial systems,” 

Computer Methods in Applied Mechanics and Engineering, vol. 372, p. 113377, Dec 

2020. 

[31] X. Han, L. Zhang, K. Zhou, and X. Wang, “Deep learning framework dnn with 

conditional wgan for protein solubility prediction,” Cornell University, 

https://doi.org/10.48550/arXiv.1811.07140, 2018. 

[32] M. Khodaee, M. Banakermani, and H. Baghban, “Gan-based metamaterial terahertz 

bandpass filter design: tunability and ultra-broad passband attainment,” Applied Optics, 

vol. 54, pp. 8617–8624, 2015. 

[33] T. Tran, F. Amirkulova, and E. Khatami, “Acoustic cloak design via machine 

learning,” Cornell University, https://doi.org/10.48550/arXiv.2111.01230, 2021. 

[34] I. Sajedian, T. Badloe, and J. Rho, “Optimisation of colour generation from dielectric 

nanostructures using reinforcement learning,” Optics Express, vol. 27, p. 5874, Feb 

2019. 

[35] I. Sajedian, H. Lee, and J. Rho, “Double-deep q-learning to increase the efficiency of 

metasurface holograms,” Scientific Reports, vol. 9, Jul 2019. 



 

50 

[36] T. Shah, L. Zhuo, P. Lai, A. De La Rosa-Moreno, F. Amirkulova, and P. Gerstoft, 

“Reinforcement learning applied to metamaterial design,” The Journal of the 

Acoustical Society of America, vol. 150, pp. 321–338, 2021. 

[37] S. Kim, I. Kim, and D. You, “Multi-condition multi-objective optimization using deep 

reinforcement learning,” Cornell University, https://doi.org/10.48550/arXiv.2110. 

05945, 2021. 

[38] J. Viquerat, J. Rabault, A. Kuhnle, H. Ghraieb, A. Larcher, and E. Hachem, “Direct 

shape optimization through deep reinforcement learning,” Journal of Computational 

Physics, vol. 428, p. 110080, 2021. 

[39] G. L. Guimaraes, B. Sanchez-Lengeling, C. Outeiral, P. L. C. Farias, and A. Aspuru-

Guzik, “Objective-reinforced generative adversarial networks (organ) for sequence 

generation models,” https://doi.org/10.48550/arXiv.1705.10843, 2017. 

[40] E. Putin, A. Asadulaev, Y. Ivanenkov, V. Aladinskiy, B. Sanchez-Lengeling, A. Aspuru-

Guzik, and A. Zhavoronkov, “Reinforced adversarial neural computer for de novo 

molecular design,” Journal of Chemical Information and Modeling, vol. 58, pp. 1194–

1204, May 2018. 

[41] F. A. Amirkulova and A. N. Norris, “Acoustic multiple scattering using fast iterative 

techniques,” in Proceedings of the International Mechanical Engineering Congress and 

Exposition, vol. 13, pp. V013T01A005, 2017. 

[42] Z. Yang, J.-L. Wu, and H. Xiao, “Enforcing deterministic constraints on generative 

adversarial networks for emulating physical systems,” Cornell University, 

https://doi.org/10.48550/arXiv.1911.06671, 2019. 

[43] M. Chen, J. Jiang, and J. Fan, “Design space reparameterization enforces hard 

geometric constraints in inverse-designed nanophotonic devices,” Cornell University, 

https://doi.org/10.48550/arXiv.2007.12991, 2020. 

[44] J. Jiang and J. A. Fan, “Simulator-based training of generative neural networks for the 

inverse design of metasurfaces,” Nanophotonics, vol. 9, pp. 1059–1069, Nov 2019. 

[45] R. Shankar, Principles of quantum mechanics. Springer Science & Business Media, 

2012.  

[46] The MathWorks Inc, “When the solver fails. mathworks matlab documentation,” 

MathWorks, https://www.mathworks.com/help/optim/ug/when-the-solver-fails.html. 

[47] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. 

Wierstra, “Continuous control with deep reinforcement learning,” Cornell University, 

https://doi.org/10.48550/arXiv.1509.02971, 2015. 

http://www.mathworks.com/help/optim/ug/when-the-solver-fails.html
http://www.mathworks.com/help/optim/ug/when-the-solver-fails.html


 

51 

[48] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. 

Riedmiller, “Playing atari with deep reinforcement learning,” 

https://doi.org/10.48550/arXiv.1312.5602, 2013. 

[49] R. S. Sutton and A. G. Barto, Reinforcement Learning, MIT Press Ltd, 2018. 

[50] The MathWorks Inc, “Train multiple agents to perform collaborative task, ” MathWorks, 

https://www.mathworks.com/help/reinforcement-learning/ug/train-2-agents-to-collaborate. 

html, 2021. 

[51] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by 

reducing internal covariate shift,” Cornell University, 

https://doi.org/10.48550/arXiv.1502.03167, 2015. 



 

52 

APPENDIX A 

HYPER PARAMETERS 

A.1 Hyper Parameters of 2D-GLOnets 

Table A.1 Hyper parameters of 2D-GLOnets 

Name Value Description 

Noise Dimensions depends on M Determine the size of the noise 

vector 

Noise scale 1.0 Determine the amplitude of noise 

a 1.0 Radius of scatterer 

numIter 2000 Control the number of epochs 

lr 0.001 Learning rate 

Optimizer Adam Optimizer used for both networks 

scale 50 Multiplier at the output layers 

Rout 15 Radius of outer boundary in meters 

Rin 2.31 Radius of inner annulus in meters 

β 10 Tunable parameter in loss function 

Hidden size 128 Dimension of hidden layers 

 

A.2 Hyper Parameters of RL Model 

Table A.2 Hyper parameters of the RL Model 

Name Value Description 

γ  0.9  future reward 

Initial noise scale  0.5  Scale of normally distributed noise 

Final noise scale  0.01  Final scale of noise at end of 

training 

τ  0.001  target network update rate 

α  0.7  How much to use prioritized 

sampling 

β  0.5  How aggressively to apply 

importance-sampling weights 

Optimizer  Adam  Optimizer used for both networks 

Actor learning rate  1e−4  Learning rate of actor optimizer 

Critic learning rate  1e−3  Learning rate of critic optimizer 

Critic weight decay  1e−2  Regularization term to prevent 

overfitting 

Batch size  64  Number of samples per batch of 

gradient descent 

mi  2.0  mass of scatterer 

ci  1.0  Damping coefficient of scatterer 

ki  1.0  stiffness coefficient of scatterer 

cw  2.0  Damping coefficient of boundary 

kw  1.08  stiffness coefficient of boundary 
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APPENDIX B 

OPTIMAL CONFIGURATIONS GENERATED BY 2D-

GLONETS AND FMINCON 

B.1 Final Devices Discovered by 2D-GLOnets and fmincon at 0.35 ≤ ka ≤ 0.45 

 
Figure B.1 Optimized configurations generated by Active-set (red corlor), 

Interior-point (yellow color), SQP (green color), SQP-legacy (blue 

color),and 2D GLOnet (pink color) at 0.35 ≤ ka ≤ 0.45. 
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B.2 Final Devices Generated by 2D-GLOnets and fmincon at 1.00 ≤ ka ≤ 1.20 

 
Figure B.2 Optimal configurations of rigid cylinders discovered by Active-set, 

Interior-point, SQP, SQP-legacy, and 2D-GLOnets at 1.00 ≤ ka ≤ 1.20. 

The initial configurations are denoted by cyan color. 
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B.3 Optimal Devices Discovered by 2D-GLOnets and fmincon with Three Fixed 

Scatterers Inside An Annulus Region at 0.35 ≤ ka ≤ 0.45 

 
Figure B.3 Optimized configuration discovered by fmincon and 2D-GLOnets 

with three fixed rigid cylinders inside an annulus for Mo = 4, 18, and 24. 
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APPENDIX C 

OPTIMAL DEVICES DISCOVERED BY THE RL MODEL 

AND FMINCON AT 0.35 ≤ KA ≤ 0.45 

 
Figure C.1 Optimal configurations found by the RL models and fmincon for 

M = 8, 10, and 12. 
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