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ABSTRACT

QUANTUM MECHANICS AND DYNAMICAL MODELS FOR FINITE UNLABELED
SIMPLE GRAPHS

by Nathan Lewis

This thesis constructs quantum mechanical theories of finite simple graphs for both labeled

and unlabeled graphs. These theories may provide a description for discrete spacetime in a

quantum gravity theory. Finite simple graphs and their properties are introduced. The first and

second quantization of the standard quantum mechanics of particle systems are reviewed. A

quantum mechanical theory of graphs similar to first quantization of standard quantum

mechanics is developed via a correspondence of graph edges to particles in particle systems. An

algorithm for constructing quantum states of graphs which is independent of graph vertex

labeling is developed. It builds antisymmetric graph states which describe fermion graphs, the

analog of systems of fermions for graphs. A quantum mechanical theory of graphs similar to

second quantization of standard quantum mechanics is developed via the same correspondence

of graph edges and particles. Edge creation and annihilation operators are defined which insert

or delete edges between any pair of graph vertices. The commutation and anticommutation

relations of these operators are defined to produce states which are symmetric and

antisymmetric upon any vertex label permutation. Operators for certain graph properties and

constructions are defined in this theory. Dynamics are then incorporated into the second

quantization approach of the quantum mechanical graph theory by developing two model

Hamiltonians, in analogy with the Hamiltonians of the Ising and Heisenberg models of

ferromagnetism. From these Hamiltonians, statistical mechanics can be used to describe the

dynamics of graphs.
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I INTRODUCTION

The search for a quantum theory of gravity is one of the most pressing problems in modern

physics. The Standard Model of particle physics is currently the best theory of fundamental

particles and interactions consistent with quantum mechanics.1 Although a very effective

theory, it leaves many phenomena unexplained, including gravitation. Various approaches have

been developed to address this limitation, including the quantization of spacetime. This places

gravity on equal mathematical footing with quantum mechanics, where physical observables

are quantized. Emergent quantum gravity builds quantized spacetime from simple constituents.

For example, the graph emergent quantum gravity approach builds quantized spacetime from

finite graphs, which consist of a set of objects and binary relationships between them.

Geometrically, they may be represented by a set of vertices and edges connecting them. The

vertices may represent constituents of space and the edges may represent binary relationships

between these constituents, which encode the structure of space. The time evolution of graphs

in a dynamical theory leads to the emergence of spacetime. The graph emergent quantum

gravity approach was introduced by Konopka et al., who developed a quantum theory of finite

graphs and graph dynamics.2 Spacetime can then emerge from macroscopic phenomena arising

from graph dynamics. One limitation of this theory is its dependence on graph vertex labeling;

Konopka builds a quantum theory of graphs with distinguishable vertices. These graphs must

be labeled to properly distinguish between their vertices. This is akin to defining a coordinate

system on the graph. An emergent quantum gravity theory, however, must be coordinate

system independent, as is general relativity, so that the predictions of the theory do not depend

on the coordinate system used. This thesis addresses this issue by developing quantum theories

of unlabeled finite graphs similar to Konopka’s quantum theory of finite graphs. In describing

unlabeled graphs, the theory does not depend on a graph’s vertex labeling to describe a

quantum state of the graph, and so is inherently coordinate system independent. This theory

may then be used to derive a coordinate system invariant description of emergent spacetime.
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II LITERATURE REVIEW
II.A The Standard Model of Particle Physics and the Quantum Gravity Problem

The Standard Model of particle physics is a quantum field theory which describes

fundamental particles and interactions. It is the most accurate and complete theory of

fundamental particles and interactions today.1 It has successfully explained many physical

phenomena, such as the anomalous magnetic moment of the muon, whose predicted value from

the Standard Model constitutes the most accurate agreement between theory and measurement

in all of science.3 However, it also has many limitations, including its neglect of gravitation,

which arises from the background dependence of the theory. The Standard Model assumes a

static Minkowskian (flat) spacetime background for particles and their interactions. This

contradicts the dynamical spacetime of general relativity, where there is a mutual interaction

between spacetime and matter; the former provides a stage for particle dynamics, but can

change in response to these dynamics. Quantum gravity is a field of physics which attempts to

rectify this problem by incorporating quantum mechanics into gravitational theory.4

One important step in developing a quantum gravity theory is the formulation of quantum

field theory in curved spacetime.5 This is a step in the right direction because it generalizes the

Minkowskian spacetime background of the Standard Model to general spacetime backgrounds.

However, these theories are still limited because the background spacetime is still classical;

they do not account for quantum effects. Also, they are not background independent; they still

depend on a static spacetime background, so they do not address the considerable challenge of

incorporating the mutual interaction of matter and spacetime into gravitational theory.

However, a quantum gravity theory may be well worth the difficulty required to formulate

it. It would not only provide a more fundamental description of gravity, but also resolve more

pressing issues in physics, such as singularities in general relativity. These singularities signal

the mathematical breakdown of the theory, which occurs because it neglects unknown
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fundamental principles which govern gravity. A quantum theory of gravity may provide these

principles and cure these singularities, which may be useful, for instance, for curing the Big

Bang singularity at the beginning of the universe.6 A quantum theory of gravity may also

explain the source of black hole entropy, whose existence is required by the second law of

thermodynamics. The required entropy of a black hole is known,7 but the source of this entropy

is unknown. In describing the fundamental constituents of spacetime, quantum gravity theories

may account for black hole entropy because they naturally arise from the internal degrees of

freedom of spacetime. For example, loop quantum gravity has been used to derive the expected

black hole entropy from the internal degrees of freedom the theory associates with spacetime.8

Motivated by these promises, many physicists have formulated quantum theories of gravity,

but none of them have proven to be complete and accurate. This section will outline some of

the progression of quantum gravity theories.

II.B Semiclassical Gravity

A common approach to formulating a quantum gravity theory is to quantize perturbations of

a background spacetime. This makes gravitational theory more mathematically consistent with

quantum mechanics, since both theories are now premised on discrete mathematical objects.

However, we can also keep geometry classical while accounting for the quantization of matter

by preserving the Einstein field equations of general relativity and using the quantum

expectation value for the energy-momentum tensor in these equations. This is called the

semiclassical approach to quantum gravity, since it is a partly classical and partly quantum

treatment of gravity.

One clear deficiency of this theory is its use of the quantum expectation value of the

energy-momentum tensor, which neglects fluctuations and correlations in this quantity. The

stochastic approach to semiclassical gravity addresses this issue by accounting for these

correlations and fluctuations.9 Although this approach may be useful for developing an exact
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quantum gravity theory, it is still an approximation which is inaccurate when there are large

fluctuations in the energy-momentum tensor. The intractability of these fluctuations calls the

semiclassical paradigm into question.10 In addition, some experiments have revealed

mathematical inconsistencies in this approach.11

II.C The Quantization of Spacetime

We now discuss quantum gravity theories which quantize spacetime. These theories may be

broadly classified as perturbative and nonperturbative theories.

II.C.1 Nonperturbative Theories: Wheeler-DeWitt Canonical Quantization

Wheeler-DeWitt canonical quantization is a nonperturbative theory of quantum gravity

which quantizes spacetime by enforcing quantum commutation relations on the

Arnowitt-Deser-Misner (ADM) formalism for general relativity, a Hamiltonian (canonical)

representation of the theory.12 In this representation, the metric is defined as a canonical

position variable and the Hamiltonian is constructed to yield the Einstein field equations of

general relativity from the canonical equations of motion. The theory is quantized by promoting

the canonical variables to operators and imposing the appropriate quantum commutation

relations between them. The theory thus incorporates quantum effects into the metric, and thus

into spacetime.

One of the most notable developments from this approach is loop quantum gravity, one of

the mainstream quantum gravity theories today. It arose from a variable change in the ADM

formalism to the Ashtekar variables, where the canonical quantization regime yields solutions

representable by loops. Consequently, space may be viewed as a web of interlocking loops.13

This approach is appealing because it simply extends a known theory, canonical

quantization, to quantum gravity. However, the ADM formalism of general relativity contains

constraints, which encode the Einstein field equations into the theory.14 The incorporation of

these constraints is difficult and the Wheeler-DeWitt equations have not yet been solved in their
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full generality. A more fatal flaw of this approach, however, is the incommensurate treatment

of time in canonical quantization and general relativity: the former assumes time monotonically

increases, while the latter does not assign time a fixed direction.15

II.C.2 Perturbative Theories: Gravitational Perturbative Quantum Field Theory

Quantum gravity has also been formulated as a perturbative quantum field theory, where the

fluctuations of the metric tensor of general relativity are treated as a quantized field.16 This

formulation eliminates the specious extension of canonical quantization to general relativity,

but is still flawed because it is still background dependent. The theory also has mathematical

limitations. Perturbative quantum field theory depends on the existence of a nondynamical field

configuration, which is not clearly defined in the gravitational theory.14 The most significant

drawback of the perturbative formulation, however, is that it is nonrenormalizable; it yields

nonsensical infinities which cannot be tamed by mathematically modifying the theory.17

Neither the perturbative nor nonperturbative approaches to quantum gravity can account for

the interaction of matter and spacetime because they are both background dependent. We thus

suspect to create a quantum gravity theory by accounting for more fundamental principles of

spacetime rather than mathematically modifying current theories. For this purpose, we discuss

emergent quantum gravity.

II.D Emergent Quantum Gravity

Emergent quantum gravity does not appeal to previous theories and starts from fundamental

principles. Spacetime is derived solely from macroscopic properties emergent from interactions

of simple constituents. Thus, these theories are self-referential and provide a fundamental

description of spacetime.

We mention two approaches to emergent quantum gravity in passing: quantum gravity built

from quantum entanglement and from matrices. Quantum gravity is constructed from quantum

entanglement via the AdS/CFT correspondence, which is a duality between a gravity theory
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describing spacetime in negatively curved Anti-de Sitter (AdS) space to a conformal quantum

field theory defined on the spacetime’s boundary. We can thus correspond quantum field states

with spacetime geometries in the gravity theory. Additionally, entangling or disentangling

quantum field states corresponds to connecting or disconnecting spacetime in the gravity

theory.18 Spacetime can thus be constructed by entangling or disentangling quantum field states.

Emergent quantum gravity built from matrices incorporates quantum mechanical

non-commutativity into the commutative geometry of general relativity as a result of the

non-commutativity of matrices, thus incorporating quantum principles into spacetime.

II.D.1 Quantum Graphity: Emergent Spacetime from Graphs

This thesis considers an approach to emergent quantum gravity which utilizes finite graphs,

which consist of sets of objects with binary relationships between their constituent objects. We

can represent a graph’s objects with vertices and their relationships with edges connecting them.

Finite graphs have been used in physics in various contexts, including in the study of crystals

and quantum chaos.19,20 In 2006, Konopka et al. applied finite graphs to emergent quantum

gravity, where the graphs describe the structure of space.2 They developed a quantum theory of

graphs which associates graphs with vectors in a Hilbert space. With this association, graphs

may time evolve quantum mechanically by a Hamiltonian operator defined in the Hilbert space.

The graph state at a fixed time determines the structure of space and its dynamical evolution

incorporates time into space. Thus, the graphs and their resulting dynamics may provide a

quantum description of spacetime.

One limitation of this approach is that it utilizes labeled graphs. Since vertex labeling

defines a coordinate system on a graph, the analog of coordinate system invariance for graphs is

the permutation invariance of the vertex labels. Thus, Konopka’s theory cannot provide a

coordinate system invariant description of spacetime like general relativity. This thesis builds

upon Konopka’s formalism by similarly developing quantum descriptions for graphs in analogy
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with the first and second quantization of quantum mechanics, but with unlabeled graphs instead

of labeled graphs. Starting with unlabeled graphs ensures that the theory is coordinate system

independent, so that any quantum gravity theory emerging from this theory is also coordinate

system independent. It will then incorporate dynamics into the theory to provide a foundation

for describing quantized spacetime, as in Konopka’s work.

The remainder of this thesis is outlined as follows. Section III will discuss properties of

finite graphs relevant to this thesis. Section IV will review the first and second quantization of

quantum mechanics, which will be important for constructing a quantum formalism for graphs.

Sections V and VI will develop quantum mechanical theories of unlabeled graphs similar to

first and second quantization of standard quantum mechanics. In starting with unlabeled graphs,

the formalism is coordinate system invariant from the beginning. Section VII will incorporate

dynamics into the theory. It will construct Hamiltonians which can model graph state dynamics

and explain how quantum gravity may emerge from the quantum graph theory. Section VIII

concludes the thesis.
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III FINITE GRAPHS

In this section, we introduce properties of finite graphs relevant to this thesis. We first

present the formal set definition of graphs and a geometrical representation of them.

III.A Definition of Graphs

Definition 1. A graph G consists of a vertex set V and an edge set E which is a subset of V ⇥V .

For example, a graph may consist of a vertex set V = {1,2,3,4} and an edge set

E = {{1,2},{2,3},{3,4},{1,3}}, as shown in Figure 1. The vertices in this figure correspond

to the elements of the vertex set and the edges to the elements of the edge set (hence the names

for each set chosen in the definition). We also define vertex degree for each vertex in a graph:

Definition 2. The degree of a vertex v is the number of vertices adjacent to it.

The definition of the edge set E in Definition 1 implies that graphs may generally have

self-looping edges, which start and terminate at the same vertex. These edges correspond to

ordered pairs (x,y) 2V ⇥V where x = y. Also, this definition of edges implies that graphs may

have directed edges, which have a sense of pointing from one vertex to another. These edges

correspond to the edges {(x,y),(y,x)} 2V ⇥V . Note that these two elements describe an edge

between the same vertices, but are ordered differently, and so have a sense of being directed

differently. We will neglect graphs with self-looping and directed edges in this thesis and

instead consider simple graphs, which will constitute the graph analogs of fermions systems

later in the thesis. Multigraphs, graphs which can have multiple edges defined between any pair

of graph vertices, may constitute the graph analogs of boson systems, but will not be utilized in

this thesis. Figure 1 shows an example of a simple graph. The more abstract set definition and

the more intuitive geometrical representation of graphs will be used throughout the thesis

depending on context.
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1

2

3 4

Figure 1: An example of a simple graph.

III.B Constructions on Graphs

In this thesis, we will consider constructions on graphs: the graph complement, induced

subgraph, and unit sphere of a graph around a vertex. We first define the graph complement:

Definition 3. The graph complement G⇤ of a graph G is the graph produced by defining edges

on all non-adjacent vertices of G and deleting edges on all adjacent vertices of G.

Figure 2 shows two complementary graphs, each composed of black and red edges, which

are superimposed to emphasize their complementary relationship. Next, we define the induced

subgraph on a subset of vertices of a graph:

Definition 4. The induced subgraph G0(H) on a subset H of the vertices of a graph G is the

graph formed from all the edges defined in G between the vertices in H.

The unit sphere is a type of induced subgraph considered in this thesis:

Definition 5. The unit sphere S(v) of a graph G around one of its vertices v is the induced

subgraph on the vertices which are unit graph distance from v.

Note that two vertices are unit graph distance apart if the minimum number of edges

separating them is one. Thus, the unit sphere on a graph is clearly an extension of the unit

sphere of Euclidean space to graphs. Figure 3 shows an example of the unit sphere of a graph

around a vertex. It is defined around vertex 3 of the graph and its edges are shown in red.
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Figure 2: An example of complementary graphs, each shown in black or red. The graphs are
superimposed to emphasize the complementary relationship between the graphs.

1

2 3

45

6

7

Figure 3: A unit sphere of a graph defined around vertex 3, shown with red edges.

III.C Graph Isomorphism and Automorphism

We conclude this section by introducing equivalence relations for graphs. An equivalence

relation is a generalization of equality to general mathematical objects, where the notion of

equality is less clear. To define equivalence relations between graphs, we need to specify a

graph property which must be the same for a set of graphs if they are to be equivalent. For this

purpose, we choose the edge adjacency of graph vertices:

Definition 6. The edge adjacency of a graph’s vertices is a specification of all the vertices

10



which are adjacent to each vertex in the graph.

We consider two graphs to be equivalent if the edge adjacency of each of their vertices are

identical, in which we call the two graphs isomorphic. Alternatively, we can define an

isomorphism of two graphs in terms of mappings between their vertex sets:

Definition 7. Two graphs G and H are isomorphic if there exists a bijection G between the

vertex sets V (G) and V (H) of G and H such that if two vertices u and v are adjacent in G, G(u)

and G(v) are also adjacent in H.

We call such a mapping between two isomorphic graphs an isomorphism. This definition of

graph isomorphism implies that an isomorphism preserves the edge adjacency of a graph.

Figure 4 shows a pair of isomorphic graphs. The right graph is obtained from the left graph by

mapping the vertices of the latter as 1 ! A, 2 ! B, 3 !C, 4 ! D, 5 ! E, 6 ! F , and 7 ! G.

This transformation preserves the edge adjacency of the left graph (this is a trivial example

because the isomorphism arises from a simple one-to-one relabeling of vertices).

Finally, we introduce graph automorphism, a special case of graph isomophism relevant to

this thesis:

Definition 8. A graph automorphism is a graph isomorphism which takes a graph G to itself.

Figure 5 shows an example of two identical graphs related by an automorphism. The right

graph is obtained by mapping the vertices of the left graph with 1 ! 4, 2 ! 1, 3 ! 2, and

4 ! 3. The graphs are automorphic because their edge sets are identical. A graph

automorphism is a symmetry transformation of a graph specified by some permutation of the

graph vertices. The set of all automorphisms of a graph constitutes a group, a type of

axiomatically defined set. We elaborate on groups further in section V.

11
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Figure 4: An example of two isomorphic graphs. They are isomorphic because there exists a
bijection between their vertex sets which preserves their edge adjacency.
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1
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Figure 5: An example of two automorphic graphs. The two graphs are identical and are related
by an isomorphism.
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IV PARTICLE QUANTUM MECHANICS IN FIRST AND SECOND
QUANTIZATION

In this section, we summarize first and second quantization of standard particle quantum

mechanics, which will be important for creating a quantum theory of graphs. Quantization of a

classical theory must account for the non-commutativity of classical observables such as

position and momentum and the quantum statistics of particles. First and second quantization

are two methods by which quantum principles can be incorporated into classical theory. First

quantization applies to systems of fixed numbers of particles, while second quantization

describes quantum mechanics of systems with variable numbers of particles.

IV.A Quantum Statistics of Particles and Symmetries of the Wavefunction

Since we do not assign dynamical variables such as position and momentum to graph states,

we focus on incorporating quantum statistics into a quantum theory of graphs. The quantum

statistics of particles arise from the indistinguishability of quantum particles and the invariance

of the physical predictions of the quantum theory when the wavefunction is multiplied by an

overall complex phase eiq , where 0  q < 2p . This invariance arises because the probability

distribution of an observable is given by the complex modulus of the wavefunction expressed in

the basis of that observable. The invariance then follows because |eiq |= 1. To begin, we

consider a system of N identical particles. Classically, we can distinguish between these

particles by tracking their trajectories, since they are deterministic in principle. Quantum

mechanically, however, we cannot distinguish between these particles because their trajectories

are nondeterministic; we can only specify the probability of a particle following a certain

trajectory between two points. Because identical quantum particles are indistinguishable,

quantum mechanical predictions of a particle system must be independent of particle labeling.

Since physical predictions in quantum theory are determined by the complex modulus of a

wavefunction, the wavefunction must only change by a complex phase under any particle label
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permutation P:
Y(x1,x2, ...,xN) = eiqPY(xP(1),xP(2), ...,xP(N)), (1)

where P(i) denotes the particle label i is permuted to upon action of the permutation P and

0  q < 2p is a complex phase which depends on the permutation P. Although the phase qP is

any complex phase, wavefunctions for most quantum particle systems transform according the

the phases qP = 0,p under permutations P of order two (i.e., they only consist of a single

interchange of two particle labels. Note that the phases for permutations P of general order are

found by applying (1) for each of the order two permutations which compose P). These phases

correspond to systems of bosons and fermions, which have wavefunctions which are symmetric

or antisymmetric under any permutation of order two, which we call the interchange of a pair of

particle labels. The symmetry properties of boson and fermion wavefunctions dictate the

statistical properties of boson and fermion systems. The antisymmetry of fermion

wavefunctions leads to the Pauli exclusion principle, which restricts occupation of particle

states to at most one particle. On the other hand, the symmetry of boson wavefunctions places

no such restriction on occupation number of states, so bosons will tend to condense into lower

energy states to minimize the system energy.

We now incorporate quantum statistics into a quantum mechanical theory of particles using

both first and second quantization.

IV.B Particle Quantum Mechanics in First Quantization
IV.B.1 Quantum Mechanics of a Single Particle in First Quantization

First quantization was the first method used to quantize classical theory of a fixed number

of particles. In this approach, system states are promoted to vectors which live in a Hilbert

space H , a vector space equipped with an inner product. The inner product is a generalization

of the dot product, so it multiplies two vectors to yield a scalar. To define an inner product on a

general vector space, we introduce the dual space V ⇤ to a vector space V as the set of all linear

maps which take vectors in V to the scalars of V . We take an inner product by acting a dual
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vector on a vector to obtain a scalar. The inner product has the same properties as the dot

product of Euclidean vector spaces, but its meaning depends on the nature of the vectors in the

vector space. Observable quantities are represented by Hermitian operators in the Hilbert space,

which we assume are differential operators for this discussion. State vectors in the Hilbert space

are then functions of some dynamical variable and the inner product hf |yi of a state vector |yi

with a dual vector hf | is then defined in terms of an integral:

hf |yi=
Z

f⇤(x)y(x)dx, (2)

where x is some dynamical variable and the integral is taken over all x.

Like any Hermitian operator acting in a vector space, any operator representing an

observable in the Hilbert space can be expressed in any basis, but we are most concerned with

the basis in which the operator is diagonalized. We find this basis by determining the

eigenvalues and eigenvectors of these operators, which comprise the possible measurements of

the observable and the quantum states corresponding to these measurements. Because the

eigenvalues of a Hermitian operator are real, the operators representing observables in the

Hilbert space are guaranteed to give real values for measurements of observables, as expected.

The eigenvectors of a Hermitian operator form an orthonormal basis for the Hilbert space, and

it is assumed that this basis is complete. We may express these eigenvectors as functions of any

dynamical variable to obtain eigenfunctions of the observable represented by the operator. We

may then express any wavefunction as a linear combination of these eigenfunctions. If |Yi

represents a system state and |fi is an eigenstate of an observable, the probability of measuring

the system in state |fi is given by |hf |Yi |2.

We have discussed quantum states without showing how they are derived, so we now

describe how these states are derived. The Hamiltonian operator of a system specifies its

dynamics. The eigenfunctions of this operator are energy eigenfunctions and span the Hilbert
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space of the system. The Schrodinger equation determines the wavefunction:

Ĥ |Yi= Ê |Yi , (3)

where Ê is the energy operator:
Ê = ih̄

∂
∂ t

. (4)

This operator explicitly depends on time, so the Schrodinger equation (3) explicitly depends on

time also. We can address the time dependence of this equation with a separable ansatz solution

if the Hamiltonian is not explicitly dependent on time. We assume the Hamiltonian is expressed

in the position basis and express the state in the position basis |yi! Y(r, t). We then substitute

the separable ansatz solution Y(r, t) = y(r)T (t) into (3). This yields a solution of form

Y(r, t) = e�iEt/h̄y(r), (5)

where the spatial part y(r) is governed by the time-independent Schrodinger equation:

Ĥy(r) = Ey(r). (6)

This equation gives the energy eigenvalues and the spatial part of the eigenfunctions of the

system. These eigenfunctions can be substituted into the ansatz (5) to yield time dependent

energy eigenfunctions for the system. Because the Schrodinger equation (3) is linear, any

solution to the system is given by a linear combination of these energy eigenfunctions, which

form an orthonormal basis for the system’s Hilbert space.

IV.B.2 Quantum Mechanics of Multi-Particle Systems in First Quantization

We now consider the quantum mechanics of systems of identical particles. Consider a

system of N identical particles. This system has a Hilbert space HN given by the tensor product

of N copies of the single-particle Hilbert space H :

HN = H
⌦N (7)
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Because the particles are identical, the predictions of the theory must be invariant upon any

permutation of particle labels, so the wavefunction must transform as (1) under such

permutations. We only consider the cases where the wavefunction transforms as qP = 0,p for

any particle interchange, which correspond to bosons and fermions, respectively. Then, (1)

implies that the wavefunction must be symmetric or antisymmetric under any particle label

interchange for bosons and fermions, respectively. We must restrict the boson Hilbert space to

symmetric states in S under particle label interchange and the fermion Hilbert space to

antisymmetric states in S under particle label interchange. Consider a system of N bosons and

let Yi(x1,x2, ...,xN) denote the state of the system. The symmetric states YB(x1,x2, ...,xN) are

YB(x1,x2, ...,xN) =
1p
N Â

s2SN

Y(xs(1),xs(2), ...,xs(N)), (8)

where SN is the symmetric group of size N, the group composed of all possible permutations on

N elements. It is easy to verify that (8) is symmetric under any particle label interchange.

Similarly, the antisymmetrized state of a system of N fermions is

YF(x1,x2, ...,xN) =
1p
N Â

s2SN

sgn(s)Y(xs(1),xs(2), ...,xs(N)). (9)

The antisymmetrized state is found similarly to the symmetrized state, but with each term

weighed by the sign of its corresponding permutation.

The boson and fermion wavefunctions (8) and (9) are cumbersome because there is

redundancy in incorporating quantum statistics into quantum theory using first quantization: we

must assign assign one particle to each coordinate in each term in (8) and (9). This is not only

redundant, but inappropriate: we can only know how many particles occupy each state, or the

occupation number of each state. Second quantization remedies this by only specifying the

number of particles in each state. This representation of particle states is called the occupation

number representation. It not only accounts for the indistinguishability of particles, but also

describes systems with a variable number of particles.
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IV.C Particle Quantum Mechanics in Second Quantization

Second quantization eliminates the redundancy of first quantization by constructing

quantum states from acting creation and annihilation operators on a vacuum state with no

particles. These operators add particles to or subtract particles from states and allow them to be

specified in the occupation number representation. These operators may be used to construct

more complicated operators in the system’s Hilbert space. Creation and annihilation operators

are mathematically motivated by drawing an analogy between quantum systems of particles and

the quantum one-dimensional simple harmonic oscillator, which is described by a Hamiltonian

given in the position basis by

Ĥ =� h̄2

2m
d2

dx2 +
1
2

mw2x2. (10)

Solving the the time-independent Schrodinger equation (6) with this Hamiltonian yields the

energy levels of the system:
En =

✓
n+

1
2

◆
h̄w, (11)

where n = 0,1,2, ... is a non-negative integer. The ground state energy of the system is 1
2 h̄w ,

and excited states are spaced by h̄w . We now consider the operators

â† =

r
mw
2h̄

✓
x̂� i

mw
p̂
◆
, (12)

â =

r
mw
2h̄

✓
x̂+

i
mw

p̂
◆
. (13)

These operators are interpreted as creation and annihilation operators of the quantum of energy

h̄w , which add or subtract a quantum of energy to or from the system, respectively. To verify

this, we act creation and annihilation operators on the energy eigenstates yn(x) of energy En of

the quantum simple harmonic oscillator, then act the Hamiltonian on this result to measure the

energy:
Ĥâ†yn(x) = (En + h̄w)yn(x), (14)

Ĥâyn(x) = (En � h̄w)yn(x). (15)
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Indeed, the creation and annihilation operators add or subtract the quantum of energy h̄w to or

from the system.

We can extend this formulation of creation and annihilation operators to the quantum

mechanics of multi-particle systems. The creation and annihilation operators are defined to add

or subtract particles to or from the system. We denote creation and annihilation operators for

the single-particle state a as â†
a and âa , respectively. With these operators, we can "jump"

between states of a fixed number of particles in a multi-particle Hilbert space to one

corresponding to a different number of particles. Acting on an N-particle state in a tensor

product Hilbert space (7) with a creation or annihilation operator yields a state in a tensor

product Hilbert space (7) corresponding to N +1 or N �1 particles, respectively. Thus, second

quantization states live in Fock space F , the direct tensor sum of all tensor product powers of

the single-particle Hilbert space:
F =

•M

i=0
H

⌦i. (16)

We must then choose the symmetric and antisymmetric subspaces H+ and H� of the Hilbert

space (7) for boson and fermion systems, respectively, to ensure states are consistent with

quantum statistics. We then write the Fock spaces FB and FF for boson and fermion systems

as
FB =

•M

i=0
H

⌦i
+ , (17)

FF =
•M

i=0
H

⌦i
� (18)

We now make the second quantization of quantum mechanics consistent with quantum

statistics. Since we use creation and annihilation operators to specify states in this formalism,

we incorporate quantum statistics into it by fixing commutation and anticommutation relations

of the creation and annihilation operators. To distinguish between boson and fermion statistics,

we define b̂†
a and b̂a to be boson creation and annihilation operators, respectively, and ĉ†

a and
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ĉa to be fermion creation and annihilation operators, respectively. Boson statistics can then be

incorporated into the second quantization of quantum mechanics by enforcing the commutation

relations
[b̂†

a , b̂
†
b ] = [b̂a , b̂b ] = 0, (19)

[b̂a , b̂†
b ] = dab . (20)

The commutation relation (19) ensures that the boson wavefunctions are symmetrized and (20)

ensures the non-commutativity of position and momentum [x̂, p̂] = ih̄.

We must also ensure that states resulting from the action of creation and annihilation

operators on other states are normalized. If |nai is a boson state with na particles in the a’th

state, the boson creation and annihilation operators must satisfy

b̂†
a |nai=

p
na +1 |na +1i , (21)

b̂a |nai=
p

na |na �1i , (22)

to ensure the normalization of boson states which result from action of these operators on other

states. We can also construct the number operator, which counts the total number of particles in

all one-particle states a . If |n1,n2, ...,nii denotes the multi-particle state with ni particles in the

ith state, the number operator is defined by

N̂ |n1,n2, ...,nii=
✓

Â
a

b̂†
a b̂a

◆
|n1,n2, ...,nii=

✓
Â
a

na

◆
|n1,n2, ...,nii . (23)

Thus, we can determine the particle occupancy of a multi-particle state by finding its

eigenvalue under the action of the number operator.

Similarly, fermion particle statistics can be incorporated into the second quantization of

quantum mechanics by enforcing the anticommutation relations

{ĉa , ĉb}= {ĉ†
a , ĉ

†
b}= 0, (24)

{ĉa , ĉ†
b}= dab . (25)
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Again, (24) ensures that fermion wavefunctions are antisymmetric and (25) ensures the

non-commutativity of position and momentum. The fermion creation and annihilation operators

also satisfy (21) and (22) (with ĉ†
i and ĉi in place of b̂†

i and b̂i, respectively) to ensure the

normalization of states which result from action of these operators on other states. A number

operator can also be defined as in (23) upon replacement of b̂†
i and b̂i with ĉ†

i and ĉi.

The commutation and anticommutation relations of the boson and fermion creation and

annihilation operators allow us to create symmetric and antisymmetric boson and fermions

states, respectively.
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V FIRST QUANTIZATION OF GRAPH QUANTUM MECHANICS

In this section, we develop a quantum theory of finite unlabeled graphs similar to the first

quantization of particle quantum mechanics. This quantum formalism for these graphs is

similar to that derived by Konopka, but we begin with unlabeled graphs so that the formalism is

independent of vertex labeling. We first draw an analogy between multi-particle systems and

graphs to connect the quantum mechanics of particles and graphs. In particle quantum

mechanics, particles are the dynamical objects, which we may label with one quantum number.

In graph quantum mechanics, we consider edges to be the dynamical objects, since graph edges

constitute the essential information of a graph. Unlike particles, however, we must label edges

with two quantum numbers, since we must specify two vertices to describe an edge. With this

correspondence, we can formulate a quantum mechanical theory of unlabeled graphs.

V.A Defining Quantum Graph States

Since we consider edges to be the dynamical objects of graphs, we may define a graph state

by specifying its edges. We denote a graph state for a graph with edge set

E = {{i1, j1}, ...,{iN , jN}} as |i1 j1, ..., iN jNi. Note that this notation describes some graphs

ambiguously. For instance, |12i and |21i represent the same state, as well as |12,34,56i and

|56,34,12i, because these pairs specify the same edges. We will address this ambiguity later in

this section.

At this point, we have defined graph states by specifying the presence or absence of an edge

between each pair of graph vertices. However, this is overly restrictive. Since we would like to

construct a quantum mechanical theory of graphs, we need to incorporate quantum uncertainty

into the state of a graph. To do this, we extend the quantization scheme discussed in section IV:

we associate a vector with every graph which describes its state. These vectors live in a Hilbert

space which contains all vectors describing the quantum state of the graph. Similar to how the

Hilbert spaces of multi-particle systems may be decomposed into the tensor product of
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single-particle Hilbert spaces, the Hilbert space of a graph of N vertices may be decomposed

into a tensor product of edge Hilbert spaces Ei j for each of the
�N

2
�

pairs of vertices {i, j} in the

graph:
H (N) =

NO

j

O

i< j
Ei j. (26)

The edge Hilbert spaces Ei j are spanned by adjacency and non-adjacency states, which we label

|"ii j and |#ii j, respectively:
E = span{|"i , |#i}. (27)

These states correspond to the presence or absence of an edge between a pair of vertices {i, j}.

A general edge state is thus a linear combination of the |"i and |#i states. Note that the

single-edge Hilbert space is two-dimensional. Since the graph Hilbert space H (N) is a tensor

product of
�N

2
�

edge Hilbert spaces Ei j, the graph Hilbert space H (N) has dimension

dim(H (N)) = 2(
N
2).

V.B Quantum Statistics for Graphs

We would like the predictions of graph quantum mechanics to be independent of the vertex

labeling of graphs, similar to how the quantum mechanics of systems of identical particles is

particle label invariant. We will see that this leads to quantum statistics of graphs, similar to

how the particle label invariance of the quantum mechanics of systems of identical particles

leads to quantum particle statistics. As in particle quantum mechanics, we want graph quantum

mechanics to make probabilistic predictions via the inner product. Thus, the probabilistic

predictions obtained from the quantum theory of graphs should also be invariant under

multiplication of a graph wavefunction by an overall complex phase. We can then incorporate

the vertex label permutation invariance of the theory by extending (1) to graph states:

|i1 j1, i2 j2, ..., in jni= eiqP |P(i1)P( j1),P(i2)P( j2), ...,P(in)P( jn)i , (28)

where P(i) is the vertex which results from permuting vertex i with the permutation P. As with

(1) qP is a phase which depends the permutation P of the vertices. We only consider the phases
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qP = 0,p in (28) for any permutations P of order 2 (i.e., vertex interchanges). As before, the

phase corresponding to a general vertex permutation is found by applying (28) to each of the

vertex interchanges which comprise the permutation. The phases qP = 0 and qP = p

correspond to "boson" and "fermion" graphs, the graph analogs of systems of bosons and

fermions. Boson and fermion graph states must be symmetric and antisymmetric under any

vertex interchange to ensure the theory is independent of vertex labeling. The independence of

the theory on vertex labeling can be thought of as making the theory invariant under the action

of the symmetric group SN on the vertices of a graph with N vertices: the theory should yield

the same predictions regardless of how we change the vertex labeling. Since these symmetries

we would like to incorporate into the graph quantum theory form a mathematical group, we

discuss group theory briefly.

V.B.1 Group Theory

Group theory is the mathematical study of groups, a type of axiomatically defined set.

Groups are relevant for describing symmetries in physics, including the symmetry of second

quantization graph quantum mechanics under any vertex label permutation of graph vertices.

We first define a group:

Definition 9. A group G is a set S and a binary operation ⇤ called a group operation with the

following properties:

• Closure of Group Under Group Operation: For any two elements A,B 2 G, A⇤B is also

in G:
A⇤B =C,C 2 G. (29)

• Associativity Under Group Operation: For any three elements A,B,C 2 G,

(A⇤B)⇤C = A⇤ (B⇤C). (30)

• Existence of an Identity Element: There exists an identity element I 2 G such that

I ⇤A = A⇤ I = A. (31)
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• Existence of Inverse Element: for every A 2 G, there exists an inverse element A�1 which

obeys
A⇤A�1 = A�1 ⇤A = I. (32)

These group axioms define a structure on a set. One way to describe the structure of a group

is to decompose it into cosets. Consider a group G and a subgroup H of G. The left and right

cosets of H in G are generated by multiplying the subgroup H by each element in G from the

left and right:
gH = {gh}(h 2 H,g 2 G), (33)

Hg = {hg}(h 2 H,g 2 G). (34)

Finding the cosets of a group with respect to some subgroup generalizes division to groups, as

will be verified later in this section. Although we may expect to obtain N unique left or right

cosets of H in G, there are actually fewer than N unique cosets because they are either disjoint

or identical. Lagrange’s theorem gives the size (or index) [G : H] of the set of cosets G/H in

terms of the sizes |G| and |H| of G and H:

[G : H] =
|G|
|H| . (35)

The number of cosets of H in G is therefore equal to the quotient of the sizes of G and H, thus

verifying the intuition that decomposing a group into cosets is a generalization of division to

groups.

Permutation groups consist of sets of permutations which form groups. Since the

symmetries we must incorporate into the quantum theory of graphs form permutation groups,

they will be relevant to the construction of first quantization graph states. In particular, for a

graph of N vertices, we must construct the wavefunction such that it only changes by

multiplication of a complex phase under all vertex permutations in the symmetric group SN . For

boson and fermion graphs, this amounts to overall multiplication of the wavefunction by ±1

under any vertex permutation in SN
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Before doing this, we introduce a notation for representing permutations. We represent a

permutation which swaps two objects i and j by (i j). To combine permutations, we place the

permutation symbols next to each other, with the permutations placed in the order they are to be

applied from right to left. For example, consider a set of objects labeled one through four. To

permute objects 1 and 2, then 3 and 4, we write (34)(12). Finally, we represent cyclic

permutations, which consist of cyclically permuting a subset of objects in a set while fixing the

others. A cyclic permutation of k elements is called a k-cycle. For instance, the set of

permutations (12),(23),(31) is a 3-cycle, because it involves taking 1 to 2, 2 to 3, and 3 to 1,

so the permutations "close in" on themselves. We can represent a k-cycle consisting of

permutations (12),(23), ...,(k�1k),(k1) as (12...k�1k) for brevity. For instance, we can

represent the permutation (13)(32)(21) as simply (132).

V.C Construction of Antisymmetric Graph States in First Quantization

We now construct antisymmetric graph states in first quantization; we do not address the

construction of symmetric states in this thesis. Antisymmetric graph states describe simple

finite graphs because at most one edge can be defined between any pair of vertices in the graph

as a consequence of the antisymmetry of states upon vertex label interchange (this is similar to

how the antisymmetry of multi-particle wavefunctions under particle label interchange prevents

more than one particle from occupying a single particle state, which is the Pauli exclusion

principle). We first account for the ambiguity in the graph state notation mentioned earlier. We

must ensure that the states |i ji and | jii, and |i j,kli and |kl, i ji, are non-distinct, since each of

these pairs describes the same graph. To do this, we enforce the antisymmetry of these states

under vertex and edge interchange:
|i ji=� | jii , (36)

|i j,kli=� |kl, i ji . (37)

This ensures that pairs of states related by vertex or edge interchange are not considered distinct

states of the system, similar to how the antisymmetry of fermion wavefunctions prevents
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double occupancy of a particle state.

We now conjecture to construct antisymmetrized graph states for a graph of N vertices

similarly to how antisymmetrized states are constructed in the first quantization of particle

quantum mechanics. We first select a "base state" by arbitrarily labeling the vertices of the

graph and writing the resulting state for the graph. We then apply all permutations in SN onto

the base state to produce N! states, multiply each of these state by the sign of the permutation

used to produce them from the base state, and sum all the states. To find the antisymmetrized

state for the complete graph K(3), for example, we may start with the base state |12,13,23i,

sum all states resulting from acting all permutations in S3 to this state, multiply each term by

the sign of each state’s corresponding permutation, and normalize the result. Doing this gives

the antisymmetrized states |Y�(K(3))i for the complete graph K(3):

|Y�(K(3))i= 1p
6
(|12,13,23i� |21,23,13i� |32,31,21i� |13,12,32i+ |23,21,31i+ |31,32,12i).

(38)

However, this method for constructing antisymmetrized graph states is flawed. For instance,

using (36) and (37) to simplify (38), the graph state is trivially zero.

To rectify this, we note that (38) is anti-symmetric under any permutation of vertex labels if

we neglect conditions (36) and (37). It is only when we impose these conditions that the state

vanishes because any two kets appearing in the state (38) related by a vertex or edge interchange

will cancel. Since all kets in the state (38) are related by some vertex or edge interchange, they

all cancel. Thus, there are redundant kets in (38), and we create a non-trivial graph state by

deleting these redundant kets. For the complete graph K(3), we only need one ket to specify the

state. We choose to keep |12,13,23i, so we obtain the new antisymmetrized state

|Y�i= |12,13,23i . (39)

It can easily be shown that the state (39) is antisymmetric upon any vertex permutation in S3.
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Although it is easy to eliminate the redundant kets resulting from the standard

anti-symmetrization procedure for the complete graph K(3), it is harder to eliminate redundant

kets in more complicated graph states resulting from the standard anti-symmetrization

procedure. We thus develop a more systematic way for eliminating redundant kets. The

redundancy of kets in a graph state for a graph G is captured in the automorphism group GG of

G, which contains the permutations which generate all the graphs automorphic to G. We can

thus account for the redundant kets in a graph state of N vertices produced by the standard

antisymmetrization procedure by finding the cosets SN/GG of the automorphism group GG in

SN , which partition the symmetric group SN according to the symmetries of the graph. Taking

the left cosets of GG in SN , we obtain, from (33),

SN/GG = sGG = {sg}(s 2 SN ,g 2 G(G)). (40)

According to Lagrange’s theorem (35), there are |SN |/|GG|= N!/|GG| cosets, each of size |GG|.

They collectively contain all the elements of SN , since the cosets are disjoint or identical, but

these elements are now divided according to the symmetries of the graph. We may obtain a set

of permutations which generates the necessary states for constructing the antisymmetrized state

by selecting one element from each coset. We call this selection of elements from the cosets a

traversal T of the cosets. We then select a base state |i1 j1, i2 j2, ..., in jni and act all the

permutations in the traversal on this state, multiply each state by the sign of its corresponding

permutation, add the resulting states, and normalize the result to obtain an antisymmetrized

state |Y�i for the graph. This yields

|Y�i=
1p

N!/|GG|
Â

P2T (SN/GG)

sgn(P) |P(i1)P( j1),P(i2)P( j2), ...,P(in)P( jn)i , (41)

where the sum is taken over the kets corresponding to each of the N!/|GG| permutations P in a

traversal of cosets T (SN/GG), sgn(P) is the sign of permutation P, and the square root factor is

a normalization constant. Thus, we have formulated an antisymmetrization procedure to
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calculate antisymmetrized states under vertex interchange in the first quantization of graph

quantum mechanics:

• Find the automorphism group GG of the graph G.

• Calculate the left cosets SN/GG.

• Take a traversal T (SN/GG) of the cosets.

• Use (41) to construct the antisymmetrized graph state from the traversal T (SN/GG).

There is freedom in this procedure to choose any traversal T (SN/GG) of the cosets or any base

state to construct |Y�i. We claim without proof that the antisymmetrization procedure works

independently of the traversal of T (SN/G(G)) taken or base state used.

As an example, we apply this method to find an antisymmetrized state for the complete

graph K(3) and check for agreement with our previous result. The automorphism group GK(3)

of K(3) is GK(3) = S3, and there is only one coset S3/GG equal to the symmetric group S3.

Thus, we can select any permutation from S3 to produce the antisymmetrized state. We choose

to apply the identity I to the base state |12,13,23i, from which we simply obtain (39), as

expected.

We also apply the antisymmetrization procedure to a graph G of three vertices and two

edges, with vertex and edge sets given by V = {1,2,3}, E = {{1,2},{2,3}}. The

automorphism group GG of G is
GG = {I,(13)}. (42)

The cosets S3/GG are

S3/GG = {{I,(13)},{(23),(123)},{(12),(132)}. (43)

We take the traversal T (S3/GG) to be

T (S3/GG) = {I,(23),(12)}. (44)
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Upon applying (41) with the base state |12,23i, we obtain for the antisymmetrized state |y�i

|y�i=
1p
3
(|12,23i� |13,32i� |21,13i). (45)

It can be verified that the state (45) is antisymmetric under any vertex permutation in S3.

Once symmetric and antisymmetric states can be constructed for graph states, we have

completed the construction of first quantization of graph quantum mechanics. We have

assigned vectors to graphs which constitute a graph Hilbert space. We may then define

operators on this Hilbert space, including a Hamiltonian operator which may describe graph

dynamics. However, the construction of operators in first quantization for describing graph

properties and graph dynamics is cumbersome because of the way we specify states in this

formalism. To understand this, we reconsider the first quantization of particles. As mentioned

in section IV, there is redundancy in the first quantization of particles because we

inappropriately assign particle labels to indistinguishable particles. Due to this particle label

assignment, we had to construct states which are symmetric or antisymmetric under any

interchange of these labels. We circumvented this problem by introducing second quantization

and the occupation number representation: by only specifying the number of particles in each

state, we properly treat the particles as indistinguishable and eliminate the redundancy of

particle labels. This allows us to define operators which add or subtract particles from states

more naturally than in first quantization. Whereas in first quantization we have to reconstruct

the symmetrized or antisymmetrized state for a different number of particles when we change

the number of particles in a state, we can simply act creation and annihilation operators on

second quantization states to change the number of particles they describe. The commutation

and anticommutation relations of these operators are specified so states are consistent with the

quantum statistics of first quantization. These operators allow us to more naturally construct

Hamiltonians which describe the dynamics of systems with changing numbers of particles.

We may similarly circumvent the construction of symmetrized and antisymmetrized graph
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states in first quantization by introducing a quantum theory of graphs similar to the second

quantization of standard quantum mechanics. Unlike in the particle theory, we cannot

completely eliminate the use of vertex labels because we must assign vertex labels to vertices to

specify states. However, we may still define creation and annihilation operators for graph

edges, which add edges to or delete edges from pairs of vertices in a graph. We specify the

commutation and anticommutation relations of these operators to ensure states are consistent

with the quantum statistics of first quantization. With these operators, we may more easily add

or delete edges from states by simply acting edge creation and annihilation operators on them.

This is especially useful for constructing Hamiltonian operators which may describe graph

dynamics. Non-trivial dynamics for unlabeled graphs arise from graphs with variable numbers

of edges. If we simply move an edge on a graph to a different pair of vertices, the resulting

graph is the same as the original graph because the vertices are indistinguishable. By

incorporating operators which allow us to add or subtract edges from graphs more efficiently,

we can more easily describe graph state dynamics in a Hamiltonian in a second quantization of

graph quantum mechanics. We turn to formulating this theory in the next section.
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VI SECOND QUANTIZATION OF GRAPH QUANTUM MECHANICS

In this section, we develop a quantum description of finite unlabeled graphs similar to the

second quantization of particle quantum mechanics. We cannot discard vertex labels on graphs

as we could eliminate particle labels on particles in systems of particles because vertex labels

are required to specify edges on graphs, but we can still avoid constructing symmetric and

antisymmetric states by introducing creation and annihilation operators with certain

commutation and anticommutation relations.

VI.A Edge Creation and Annihilation Operators

Since edges are analogous to particles in graphs, we first define edge creation and

annihilation operators which create or delete edges in a graph, similar to those of the second

quantization of particle quantum mechanics. We assume that we can neither add vertices to nor

subtract vertices from the graph so that edge states cannot be added or removed. This is in

contrast to the creation and annihilation operators of the second quantization of particle

quantum mechanics, which can add or subtract particle states to or from the particle system.

The graph Hilbert space is therefore not a direct sum of Hilbert spaces of graphs of different

numbers of vertices; it consists only of a Hilbert space of a graph with a fixed number of

vertices, as in the first quantization of graph quantum mechanics. Although creation and

annihilation operators do not allow us to jump between graph states of different numbers of

vertices, they do allow us to jump between parts of the graph Hilbert space which correspond to

graphs of different numbers of edges.

To illustrate this, note that each term in the Fock space of second quantization of particle

quantum mechanics (16) corresponds to a subset of the space which describes states with a

fixed number of particles. The creation and annihilation operators in the second quantization of

particle quantum mechanics allow us to jump between these subsets of the Fock space. The

Hilbert space H (N) of a graph state with N vertices is given by the tensor product of
�N

2
�
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two-dimensional Hilbert spaces Ei j corresponding to every pair of vertices {i, j}, but can be

decomposed into the tensor sum of
�N

2
�
+1 subspaces G (n) which comprise Hilbert spaces

containing graph states with n edges, for 0  n 
�N

2
�
. This leads to a decomposition of the

graph Hilbert space similar to the Fock space (16):

H (N) = G (0)�G (1)� ...�G

✓
N
2

◆�
. (46)

Thus, we expect the dimension of the Hilbert space to be

|H (N)|= 2(
N
2) = |G (0)|+ |G (1)|+ ...+

����G
✓

N
2

◆�����. (47)

We decompose the graph Hilbert space H (3), which has dimension |H (3)|= 2(
3
2) = 8, to

illustrate. We first determine the dimensions of the component Hilbert spaces

|G (0)|, |G (1)|, |G (2)|, and |G (3)| by specifying the states which span each Hilbert space. We

assume that the vertices are distinguishable and denote a general graph state as

|s12i⌦ |s13i⌦ |s23i, where |si ji specifies the edge state defined between vertices i and j. The

Hilbert spaces G (0),G (1),G (2), and G (3) are then given by

G (0) = span{|#i⌦ |#i⌦ |#i}, (48)

G (1) = span{|"i⌦ |#i⌦ |#i , |#i⌦ |"i⌦ |#i , |#i⌦ |#i⌦ |"i}, (49)

G (2) = span{|"i⌦ |"i⌦ |#i , |#i⌦ |"i⌦ |"i , |"i⌦ |#i⌦ |"i}, (50)

G (3) = span{|"i⌦ |"i⌦ |"i}. (51)

Thus, we see that |G (0)|= |G (3)|= 1 and |G (1)|= |G (2)|= 3, and we verify that the

dimension of the graph Hilbert space is equal to 8 = 2⌦2⌦2 = 1�3�3�1, in accordance

with (47). This may be extended to an N-vertex graph. Upon working through the possible

states in each subset G (i) of H (N), we may rewrite (47) as

2(
N
2) = Â

n=0

✓�N
2
�

n

◆
, (52)
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where we obtain the sum on the right hand side of (52) because there are
�(N

2)
n
�

possible ways to

assign states |"i to n edges out of
�N

2
�

edges. Note that

(x+ y)N = Â
n=0

✓
N
n

◆
xnyN�n. (53)

Letting N !
�N

2
�

and x = y = 1, we obtain (47). Thus, any graph Hilbert space for a graph of N

vertices may be decomposed into subspaces containing states of fixed numbers of edges. The

creation and annihilation operators allow us to jump between these component subspaces.

We now construct the edge creation and annihilation operators b̂†
i j and b̂i j for boson graphs

and ĉ†
i j and ĉi j for fermion graphs, which add or remove an edge between vertices i and j to or

from a graph, respectively. We define a vacuum state |0i which describes an empty graph and

construct graph states by acting on this vacuum state with edge creation operators, similar to the

creation of second quantization particle states.

To make the second quantization of graph states consistent with quantum statistics, we

define commutation and anticommutation relations between the boson and fermion creation and

annihilation operators, which ensure that the states they act on are symmetric or antisymmetric,

in analogy with the second quantization of particle quantum mechanics. Since the operators are

now labeled with two quantum numbers, we must modify equations (19)-(20) and (24)-(25) for

bosons and fermions so that the index on the operators contains two vertex labels which specify

an edge. The commutation or anticommmutation relations for edge creation and annihilation

operators generally depend on all four vertex labels specified in the commutator, but we will

consider the two vertex labels of each operator as one unit, so that two creation or annihilation

operators labeled with the vertex labels i j and il (i.e., the operators have one common vertex

label) will be treated as distinct. We then define the commutation and anticommutation

relations for boson and fermion graph edge creation and annihilation operators as

[b̂†
i j, b̂

†
kl] = [b̂i j, b̂kl] = 0, (54)
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[b̂i j, b̂†
kl] = d{i j}{kl}, (55)

{ĉ†
i j, ĉ

†
kl}= {ĉi j, ĉkl}= 0, (56)

{ĉi j, ĉ†
kl}= d[i j][kl], (57)

where
d{i j}{kl} = dikd jl +dild jk, (58)
d[i j][kl] = dikd jl �dild jk. (59)

The properties of the particle creation and annihilation operators carry over to the

corresponding graph operators. Since all graph states must be normalized, the boson and

fermion graph edge creation and annihilation operators obey (21) and (22). Although we have

considered creation and annihilation operators for both boson and fermion graphs, we restrict

attention to fermion graphs for the remainder of this thesis. We denote the fermion graph edge

creation and annihilation operators ĉ†
i j and ĉi j as â†

i j and âi j, since it is now unnecessary to

distinguish between boson and fermion graph creation and annihilation operators.

VI.B Graph Hilbert Space Operators in Second Quantization of Graph Quantum
Mechanics

Thus far into the development of graph quantum mechanics, we have associated state

vectors with graphs which live in a graph Hilbert space. We may also define Hermitian

operators in this Hilbert space which represent graph "observables", which correspond to

properties of finite graphs considered in graph theory, similar to how Hermitian operators in

particle quantum mechanics represent physical observables of particles. We may construct

these observables using the basic edge creation and annihilation operators â†
i j and âi j In this

thesis, we build operators for four graph observables, in order of increasing complexity: edge

number, vertex degree, graph complement, and unit sphere. To ensure that these operators

preserve the norm of states, we also verify that they are unitary.

VI.B.1 Edge Number Operator

We define the edge number of a pair of vertices {i, j} on a graph G as the number of edges

defined between i and j. For fermion graphs, the edge number associated with any pair of
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vertices is either zero or one. The eigenvalue of the edge number operator N̂i j upon acting on a

graph state gives the edge number of the graph corresponding to the vertex pair {i, j} . We

construct the edge number operator in analogy with (23), but label each number operator with

two labels describing the pair of vertices considered:

N̂i j = â†
i jâi j. (60)

The unitarity of the edge number operator is verified easily by inspection.

VI.B.2 Vertex Degree Operator

We now construct the vertex degree operators d̂(i) associated with each vertex i in an

N-vertex graph. Upon acting on a graph state, the operator d̂(i) should yield an eigenvalue

equal to the vertex degree of the vertex i in the graph state.

Note that there are N �1 edges definable on any given vertex i of an N-vertex graph, so we

want a vertex degree operator for vertex i to check if edges are defined between i and all of the

other N �1 vertices. It should associate a value of one with any pair of adjacent vertices and

zero with any pair of non-adjacent vertices. The sum of the numbers associated with each of the

N �1 vertex pairs then gives the vertex degree. Since the edge number operator makes this

assignment to pairs of vertices on a graph, we sum over edge number operators which contain

the vertex label i as one of its indices to construct the vertex degree operator d̂(i):

d̂(i) = Â
j 6=i

N̂i j, (61)

where we take the sum over j 6= i because we want to neglect self-looping edges. The unitarity

of the vertex degree operator follows because the operator is a simple sum of number operators,

which are unitary.

VI.B.3 Graph Complement Operator

We now construct the graph complement operator Ĉ which gives the graph complement

state of a graph state. This operator must delete edges between adjacent vertices in a graph and
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create edges between non-adjacent vertices in a graph, so we decompose Ĉ into two parts, Ĉ+

and Ĉ�, which are subsequently decomposed into a sum of operators Ĉ+
i j and Ĉ�

i j over all vertex

pairs {i, j}, with i < j. The operator Ĉ+
i j should create an edge between vertices i and j if they

are non-adjacent and delete the state if they are already adjacent, while the operator Ĉ�
i j should

delete the edge defined between vertices i and j if they are adjacent and delete the state if they

are non-adjacent. Either Ĉ+
i j or Ĉ�

i j are non-zero for any vertex pair {i, j}, but not both or

neither of them, by construction, so they perform complementary functions. To construct Ĉ+
i j ,

we form the product of a creation operator â†
i j and a term which is unity if the vertices i and j

are non-adjacent and zero otherwise. We propose the form

Ĉ+
i j = â†

i j(1� N̂i j). (62)

It is easy to verify that this operator functions as expected.

We now construct the operator Ĉ�
i j by forming the product of an annihilation operator âi j

and a term which is unity if the vertices are adjacent and zero otherwise. We propose the form

Ĉ�
i j = âi jN̂i j. (63)

This operator functions as expected because N̂i j is zero if the vertices are non-adjacent and is

unity if they are adjacent.

We then add the operators Ĉ+
i j and Ĉ�

i j and take the product of the sum over all i < j to

create the graph complement operator:

Ĉ = ’
i< j

(Ĉ+
i j +Ĉ�

i j ) = ’
i< j

✓
âi jN̂i j + â†

i j(1� N̂i j)

◆
. (64)

To prove the unitarity of the graph complement operator (64), we let

Ĉi j = âi jN̂i j + â†
i j(1� N̂i j), so that we may write the graph complement operator as

37



Ĉ = ’i< j Ĉi j. Calculating ĈĈ† gives

ĈĈ† = ’
i< j

Ĉi j

✓
’
k<l

Ĉkl

◆†
= Ĉ1NĈ2N ...ĈN�1,N(Ĉ1NĈ2N ...ĈN�1,N)

†

= Ĉ1NĈ2N ...ĈN�1,NĈ†
N�1,N ...Ĉ

†
2NĈ†

1N .

(65)

From equation (65), the graph complement operator Ĉ is unitary if Ĉi j is unitary. Calculation of

Ĉi jĈ†
i j yields

Ĉi jĈ†
i j =

✓
âi jN̂i j + â†

i j(1� N̂i j)

◆✓
â†

i jN̂i j + âi j(1� N̂i j)

◆
= I. (66)

Thus, the operators Ĉi j, and consequently the graph complement operator Ĉ, are unitary.

VI.B.4 Unit Sphere Operator

We now construct the unit sphere operator, which gives the graph state corresponding to the

unit sphere of a graph around a graph vertex. Since the unit sphere of a graph is an induced

subgraph, we first define an induced subgraph operator over a subset S of the vertices of a

graph G. This operator should delete all edges defined on adjacent vertices i and j which do not

both belong to S and preserve any edges defined only on vertices in S. We propose an induced

subgraph operator ÎG({v1, ...,vN}) on the graph G with respect to the vertex set {v1, ...,vN} of

the form
ÎG({v1, ...,vN}) = ’

{ j,k}⇢S
(1� N̂ jk + â jkN̂ jk), (67)

where { j,k}⇢V indicates the sum over all pairs of vertices { j,k} in which j or k do not both

belong to the subset S. To verify that this operator gives an induced subgraph, we consider the

effect of a term in the product for a general pair of vertices { j,k}, then consider the operator as

a whole. The operator (67) reduces to the annihilation operator â jk if vertices j and k are

adjacent and to the identity if they are non-adjacent, as expected. Since the product of these

operators is taken over vertices j and k which both don’t belong to S, the operator has the

desired effect of deleting only edges which are not defined between two vertices which both do

not belong to S.
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To check the unitarity of the induced subgraph operator, we rewrite it as

ÎG({v1, ...,vN}) = ’{ j,k}⇢V Î jk, where Î jk = 1� N̂ jk + â jkN̂ jk. Calculating Î jkÎ†
jk directly gives

Î jkÎ†
jk = (1� N̂ jk + â jkN̂ jk)(1� N̂ jk + â jkN̂ jk)

† = I. (68)

Thus, Î jk is a unitary operator and, since ÎGÎ†
G = Î1NÎ2N ...ÎN�1,NÎ†

N�1,N ...Î
†
2NÎ†

1N , ÎG({v1, ...,vN})

is also a unitary operator.

We can now construct the unit sphere operator around a vertex v using (68), taking the set

of all vertices unit graph distance from v as the vertex set V .

With the construction of graph state operators with the edge creation and annihilation

operators of the second quantization of graph quantum mechanics, we may now define

dynamics on a graph using this formalism by constructing Hamiltonians which describe the

quantum time evolution of graphs. We turn to this in the next section.
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VII GRAPH DYNAMICS

The graph quantum mechanics theories developed previously cannot describe graph

dynamics at this point because they only describe static states, or states which do not time

evolve. In this section, we incorporate dynamics into the theory. We construct adjustable model

Hamiltonians in the second quantization of graph quantum mechanics, similar to the

Hamiltonians in the Ising and Heisenberg models of ferromagnetism, which can describe

various kinds of graph dynamics. Before defining graph state Hamiltonians, we first discuss

how to describe dynamics from a Hamiltonian using quantum mechanics and statistical

mechanics.

VII.A Quantum Mechanical Graph State Evolution

We can use quantum mechanics to describe the time evolution of a graph state given a

Hamiltonian. If the Hamiltonian does not explicitly depend on time, we can construct exact

time evolved quantum graph states using (5). The state (5) describes the time evolution of an

energy eigenstate. Since these energy eigenstates form a complete orthonormal basis for the

graph Hilbert space, we can decompose any graph state into linear combinations of these time

evolved energy eigenstates. We may write a general graph state |Yi as

|Yi= Â
i

aieiEit/h̄ |Eii , (69)

where |Eii is an energy eigenstate of the graph with energy Ei and {ai} is a set of complex

coefficients which must satisfy Âi a2
i = 1 to ensure that the state |Yi is normalized. The

decomposition (69) depends on knowledge of the energy eigenstates of the graph with

Hamiltonian Ĥ, which can be obtained using the time-independent Schrodinger equation (6).

Although this method for time evolving graph states is exact, it can be intractable for large

graphs, where solving (6) and decomposing a graph state into energy eigenstates can be tedious.

For this reason, we turn to statistical mechanics to describe graph dynamics.
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VII.B Statistical Mechanical Description of Graph State Dynamics

Statistical mechanics provides a statistical description of physics; it describes average or

expected states of systems within some uncertainty. This uncertainty is usually negligible if the

system is large enough, so statistical mechanics is accurate for large systems. Statistical

mechanics is premised on a distinction between a system’s microstate and macrostate. The

microstates of a system correspond to the exact microscopic configurations of its constituents.

For instance, the microstates of a three-dimensional ideal gas consist of the position and

momentum of each of its constituent particles. In contrast, the macrostate of a system describes

its macroscopic properties which emerge from its microscopic properties. For instance,

pressure is a macroscopic property associated with an ideal gas in a container, which arises

from the sum of the forces the gas molecules exert on the container. A state with a fixed

pressure is a macrostate of the system. We associate with every macrostate all the microstates

which result in that macrostate, and we call the number of microstates associated with a

macrostate its multiplicity. The probability of measuring a particle in a given macrostate is then

the ratio between the multiplicity of the macrostate and the total number of microstates,

assuming all the microstates are equally likely (this is referred to as the fundamental

assumption of statistical mechanics).

Since probabilities of measuring certain macrostates depend on their multiplicities, we must

analyze the microscopic states of a system and their correspondence to macrostates. Although

this is often tractable for simple systems, it is impractical to do for most realistic systems. For

example, to describe one mole of an ideal gas, we would need to solve for the motions of

⇠ 1023 particles, a very tedious task. For this reason, we consider a macroscopic approach

which describes the expected states of the system rather than the exact states of the system.

This approximate description of the system is coarse for small systems, but is justified for large

enough systems according to the thermodynamic limit: the averaged thermodynamic
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description of a system of N particles occupying a volume V becomes exact in the limit

N,V ! • which preserves the particle density N/V . In this discussion, we only consider

systems which are large enough so that the thermodynamic description is justified. These

systems are in the state with highest multiplicity with considerable certainty because this is the

state with the highest probability of being measured. We find this state by introducing entropy,

a quantity related to the multiplicity of a macrostate of a system. For a macrostate Q with

multiplicity WQ, the entropy S of the macrostate Q is given by

S = kB lnWQ, (70)

where kB is the Boltzmann constant. The most probable state of the system is then the one of

maximal entropy. This is the second law of thermodynamics: the entropy of an isolated system

cannot decrease, but will tend to evolve to a configuration of maximal entropy.

This analysis still depends on knowledge of the microstates of a system. To rectify this, we

introduce temperature, which is usually defined as a macroscopic state variable which is the

same for two systems after they have reached thermal equilibrium. There is also a microscopic

definition of temperature, which may be derived by finding the most likely system state by

maximizing the entropy. Consider two systems, labeled 1 and 2, confined to closed, rigid

containers which do not let particles in and out. The systems are in thermal contact and have a

fixed total energy E. We maximize the entropy of the system with respect to the energy E1 of

system 1 (we can then specify the energy E2 of system 2 by calculating E �E1). The total

entropy of both systems is

Stot = S1 +S2 = kB ln[W1(E1)W2(E �E1)]. (71)

We maximize the entropy with respect to E1 by setting dStot
dE1

= 0. This results in the condition

dS1

dE1
=

dS2

dE2
, (72)
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which determines thermodynamic equilibrium between systems 1 and 2. It implies that there is

a quantity that is equal for both systems at thermodynamic equilibrium, which, by definition, is

temperature. Thus, we define temperature as

1
T

=
dS
dE

. (73)

This definition of temperature implies that the temperature gives the "energy cost" of changing

the system’s entropy. Note that (73) is only valid for systems with fixed volume and particle

number because it assumes that energy cannot change due to mechanical work or diffusion of

particles into or out of the system.

We now use temperature to find a probability distribution for measuring macrostates of a

system which does not depend on knowledge of the system’s microstates. This derivation

parallels that presented in section 6.1 of Sethna’s work.21 We consider a system with discrete

energy levels {Ei} which is held at a fixed temperature by being placed in contact with a heat

bath. Letting Es be the energy of the system and E be the total energy of the system and heat

bath, the energy of the heat bath is Ebath = E �ES. If Si is the entropy associated with this

energy state, then inverting (70) for W gives the multiplicity Wi of an energy state Ei:

Wi = eSi/kB . (74)

We now consider the ratio of the probability of the heat bath having an energy Eba = E �Ea to

having an energy Ebb = E �Eb. We obtain for this ratio

P(Eba)

P(Ebb)
=

Wba

Wbb
, (75)

where Wba and Wbb are the number of microstates associated with the heat bath at energies Eba

and Ebb, respectively. Using equation (74), (75) can be rewritten in terms of the entropy:

P(Eba)

P(Ebb)
= eSba�Sbb/kB = e(∂S/∂E)(Eb�Ea)/kB = e(Eb�Ea)/kBT = eb (Eb�Ea), (76)
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where b = 1/kBT . The second equality in this equation follows from assuming the energy

fluctuations are small, which is valid for a large heat bath. The factor e�bEa in (76) is related to

the probability of finding the heat bath with energy Eba (or, equivalently, the probability of

finding the system with energy E �Eba = Eb) and the factor ebEb = 1
e�bEb

is a normalization

factor. To find the overall probability of measuring the system in a given energy, we replace the

denominator with a normalization factor Z called the partition function, which sums over all

factors e�bEi associated with each possible measurement of energy:

Z = Â
i

e�bEi . (77)

The desired probability distribution is then

P(Ei) =
e�bEi

Z
(78)

and is called the Boltzmann distribution. It can be used to calculate expectation values for

dynamical variables. The expectation value hAi for a dynamical quantity A is the weighted

average of the quantity with respect to the Boltzmann probability distribution:

hAi= Â
i

EiP(Ei) = Â
i

Aie�bEi

Z
. (79)

With the statistical mechanical theory laid out in this section, we may describe the average

dynamics of a system.

VII.C Dynamical Models for Ferromagnetism

We now construct graph Hamiltonians from the Ising and Heisenberg models for

ferromagnetism, which describe ferromagnetic systems comprised of systems of atoms.22,23

The nucleus of each of these constituent atoms has intrinsic spin and consequently a spin

magnetic moment which can interact with those of other nuclei and with external magnetic

fields. Ferromagnetism arises from these interactions of the magnetic moments of the

constituent atoms of the system. Because of the dependence of ferromagnetism on intrinsic

spin, we briefly discuss intrinsic spin.

44



VII.C.1 Intrinsic Spin

Intrinsic spin must be treated with quantum mechanics because it is a quantum property of

matter. The principles of quantum mechanics of section IV hold: the spin states live in a Hilbert

space which is spanned by a basis corresponding to an observable. The difference with spin

states is that they live in finite dimensional Hilbert spaces, since particles can only assume a

finite number of spin states. The dimension of a particle’s spin Hilbert space depends on the

particle’s spin quantum number, a quantity intrinsic to the particle and related to the magnitude

of its intrinsic spin. Thus, the magnitude of a particle’s spin is invariant, in contrast to the

classical angular momentum of a particle, which can change depending on its motion. Even

though a particle’s spin is fixed, it has more than one spin state because only the magnitude of

spin is specified by the spin quantum number; the direction of the spin may still vary. Due to

quantum mechanical uncertainty, there is only a finite number of directions for the spin’s

orientation and only one component of the spin is completely determined. We label this

determined component the z-component of spin. Quantum mechanics then dictates that the

possible values of the z-component spin Sz for a particle of spin quantum number s/2 are

Sz =� s
2

h̄,
✓
� s

2
+1

◆
h̄, ...,

✓
s
2
�1

◆
h̄,

s
2

h̄. (80)

We may write this more compactly by defining the magnetic quantum number ms, given by

ms =� s
2
,� s

2
+1, ...,

s
2
�1,

s
2
. (81)

The z-component spin Sz is then given by

Sz = msh̄. (82)

According to (80) or (81), the spin states of a spin-s particle live in a 2s+1-dimensional Hilbert

space, so the spin state of a spin-s particle is described by a 2s+1-component vector. As with

any Hilbert space, the spin Hilbert space is equipped with Hermitian operators which represent
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observables. These observables are the total spin S and the components of the spin S1,S2,S3

(the components are not labeled with the traditional x,y, and z labels to emphasize that we can

describe the three components of spin using any orthogonal coordinate basis). We label one of

these axes the z-axis, which points in the direction of the determined component of the spin.

We define the x and y axes to define a right-handed coordinate system. A Hermitian operator is

associated with each of these quantities, which is represented by a 2s+1-by-2s+1 matrix.

Since we may write quantum operators in any basis, we choose to write these operators in terms

of the Sz eigenbasis for convenience. We then express the spin state of the particle as a

2s+1-dimensional vector in the Sz eigenbasis. Each component of the vector describes a spin

state with a particular value for Sz. We determine that Sz is a diagonal matrix with entries given

by the possible measurements for z-component spin because the z-component of particle spin is

well determined and the eigenvalues of the matrix must give the possible measurements for the

z-component of spin. To determine the other spin operators, we use the spin commutation

relations, which are derived from group theory:

[Ŝi, Ŝ j] = ih̄elmnŜn, (83)

where i, j,k = 1,2,3 (we let 1,2, and 3 correspond to x, y, and z, respectively) and elmn is the

Levi-Civita tensor. The spin operators are obtained in any basis by first fixing the operator

corresponding to the determined component of spin then requiring that the remaining operators

obey (83).

To describe ferromagnetic systems, we specialize the previous discussion to spin-1/2

particles. According to (81), the only two spin states are ms =
1
2 and ms =�1

2 , which are called

spin up and spin down states, respectively. We can then express the spin matrices Ŝx, Ŝy, Ŝz in

the Sz eigenbasis. The matrix representation for Ŝz is

Ŝz =
h̄
2

✓
1 0
0 �1

◆
. (84)
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The other matrices Ŝx and Ŝy can be found by requiring that they satisfy the commutation

relations (83):
Ŝx =

h̄
2

✓
0 1
1 0

◆
, (85)

Ŝy =
h̄
2

✓
0 �i
i 0

◆
. (86)

There is an additional structure embedded in the spin-1/2 Hilbert space relevant to this

thesis. We define the spin ladder operators Ŝ± as

Ŝ± = Ŝx ± iŜy. (87)

These operators raise or lower the spin of a spin state. Calculation of ŜzŜ+ for a spin-down state

|#i yields
ŜzŜ+ |#i= (Ŝ+Ŝz +[Ŝz, Ŝ+]) |#i . (88)

It can be shown that
[Ŝz, Ŝ+] |#i= h̄Ŝ+ |#i . (89)

Thus,
ŜzŜ+ |#i= h̄

2
Ŝ+ |#i . (90)

Therefore, the operator Ŝ+ has the effect of raising the spin of a spin down particle.

Furthermore,
ŜzŜ+ |"i= 0. (91)

Thus, the ladder operator Ŝ+ annihilates the spin up state. Similarly, calculation of ŜzŜ� yields

ŜzŜ� |"i=� h̄
2

Ŝ� |"i , (92)

ŜzŜ� |#i= 0. (93)

We thus see that the ladder operator Ŝ� lowers the spin of the spin up state and annihilates a

spin down state.
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VII.C.2 The Ising Model of Ferromagnetism

With this background on intrinsic spin laid out, we turn to the Ising and Heisenberg models

of ferromagnetism. The Ising model only considers spin-spin interactions which depend on one

spin component (which is conventionally called the z-component) and the interactions of these

spins with an external magnetic field. Its Hamiltonian is expressed in terms of the intrinsic spin

states s of the atoms of the atomic system. We may then use statistical mechanics to describe

the dynamics of the system. The Ising Hamiltonian H(si) is

HI(si) =�Â
i< j

Ji jsis j �µ Â
j

h js j, (94)

where si represents the spin of the ith nucleus, and is equal to +1 or �1 for spin up and spin

down, respectively. Also, Ji j represents the spin-spin interaction strength between spins i and j,

h j represents the strength of the magnetic field acting on the spin j, and µ is the magnetic

moment of the nuclei. Note that if all Ji j > 0, the energy is lower when the spins are aligned

(sis j > 0) rather than anti-aligned (sis j < 0), so systems where more of the spins are aligned

are more energetically favorable. On the other hand, if all Ji j < 0, the energy is lower when the

spins are anti-aligned (sis j < 0) rather than aligned (sis j > 0), so systems where more of the

spins are anti-aligned are more energetically favorable (this scenario describes

antiferromagnetic systems) . Also, the energy is lowered when the spins align with the

magnetic field because h js j > 0. Because the Hamiltonian sensibly describes the spin-spin

interactions and the spin interactions with the external magnetic field, the Ising Hamiltonian

accurately describes the ferromagnetic system.

The general Ising Hamiltonian is cumbersome. If the system has N atomic nuclei, we need

to specify 1
2N(N �1) parameters Ji j and N parameters h j to construct the Hamiltonian. To

simplify this Hamiltonian, we assume the nearest neighbor interaction approximation, where

we only consider the interactions of nearest neighboring nuclei. We also assume all such

interactions are all equal in strength (Ji j = J). We will also only consider a uniform external
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magnetic field so that h j = h. Under these assumptions, the Ising Hamiltonian (94) becomes

HI(si) =�J Â
hi ji

sis j �µhÂ
i

si, (95)

where hi ji denotes a sum over neighboring spins i and j.

The Ising Hamiltonian (95) assumes spins are either in a spin up or spin down state.

However, since intrinsic spin is an inherently quantum property of matter, we must consider the

spins as assuming quantum states which generally comprise a superposition of spin up and spin

down states. The state of an N nuclei system is described by a state vector in a 2N-dimensional

Hilbert space, given by the tensor product of N spin-1/2 Hilbert spaces. The Ising Hamiltonian

is then promoted to a quantum operator by promoting the variables si to spin-1/2 operators. For

the ith spin of the system, we make the correspondence

si ! Î⌦i�1 ⌦ ŝz ⌦ Î⌦N�i, (96)

where ŝz is the z-component spin-1/2 matrix operator. The spin operator lies in the ith

component of the tensor product in the operator and all other components of the operator are

equal to the identity so that the action of the operator on a state only depends on the ith spin of

the state. Upon promoting the variables si to operators in the Ising Hamiltonian (95) according

to (96), we obtain
ĤI =�J Â

hi ji
ŝiŝ j �µhÂ

i
ŝi. (97)

This quantum generalization of the Ising Hamiltonian will become important later in this

section, where we use it to construct a graph Hamiltonian.

VII.C.3 The Heisenberg Model of Ferromagnetism

The Heisenberg model of ferromagnetism generalizes the Ising model by incorporating

spin-spin interactions which generally depend on all spin components. It does this by adding

terms into the Ising Hamiltonian (97) which account for spin-spin interactions dependent on the

x and y spin components. We define constants Jx,Jy, and Jz to denote the strengths of the
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couplings of the x,y, and z components of the nuclear spins, respectively, and we define the

operators ŝ x
i , ŝ

y
i , ŝ

z
i as

ŝ x
i = Î⌦i�1 ⌦ ŝx ⌦ Î⌦N�i, (98)

ŝ y
i = Î⌦i�1 ⌦ ŝy ⌦ Î⌦N�i, (99)

ŝ z
i = Î⌦i�1 ⌦ ŝz ⌦ Î⌦N�i. (100)

Note that (100) is the same as ŝi defined before, when we only considered interactions

depending only on the z-component of spin. We then obtain the Heisenberg Hamiltonian:

ĤH =�Â
hi ji

(Jxŝ x
i ŝ x

j + Jyŝ y
i ŝ y

j + Jzŝ z
i ŝ z

j )�µhÂ
i

ŝ z
i . (101)

Note the presence of additional spin-spin interaction terms which depend on the x and y

components of spin. With the quantum Ising and Heisenberg Hamiltonians (97) and (101), we

now construct model graph state Hamiltonians by drawing an analogy between magnetic

systems and quantum graphs.

VII.D Model Graph State Hamiltonians

In this section, we define dynamical evolution on graph states by constructing model

Hamiltonians for graph states from the Ising and Heisenberg Hamiltonians of ferromagnetism.

VII.D.1 Analogy Between Spin and Graph Systems

To construct graph Hamiltonians from the Hamiltonians of the Ising and Heisenberg

models of ferromagnetism, we first draw an analogy between magnetic systems and graphs.

Consider a spin-1/2 particle and a graph with two vertices, which has one edge state. The

Hilbert spaces of these systems are both two-dimensional, so we may correspond adjacency and

non-adjacency of any pair of graph vertices with spin up and spin down states in the spin

system, respectively. If |"i and |#i correspond to spin up and spin down states, respectively, we

can make the correspondence between particle and graph states

|"i=
✓

1
0

◆
! |edgei , (102)
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|#i=
✓

0
1

◆
! |no edgei , (103)

where |edgei and |no edgei represent states with vertex adjacency and non-adjacency states,

respectively. We thus describe adjacency and non-adjancency states of any pair of graph

vertices by vectors.

We extend this analogy to general graph and spin systems: a graph with N vertices

corresponds to a spin system with
�N

2
�

spins, since a graph with N vertices has
�N

2
�

edges. The

Hilbert space is a tensor product of
�N

2
�

edge Hilbert spaces, and thus has dimension 2(
N
2), but

we now associate a spin-1/2 structure with each component of the Hilbert space. Although this

seems arbitrary, this assignment allows us to define graph state Hamiltonians in analogy with

the Ising and Heisenberg Hamiltonians, which are defined in terms of spin-1/2 operators. We

can now express the Hilbert space H (N) of a graph with N vertices as the tensor product of

spin-1/2 like edge Hilbert spaces Hi j:

H(N) =
O

i< j
Hi j. (104)

We emphasize that the edge Hilbert spaces Hi j are different from the previously defined edge

Hilbert spaces Si j because the former is equipped with a spin-1/2 Hilbert space structure.

We can now create graph state operators in analogy with the spin-1/2 operators by defining

the edge operators Êx, Êy, Êz:
Êx =

✓
0 1
1 0

◆
, (105)

Êy =

✓
0 �i
i 0

◆
, (106)

Êz =

✓
1 0
0 �1

◆
, (107)

where we choose a unit normalization for simplicity. These operators are the graph analogs of

the spin operators Ŝx, Ŝy, and Ŝz. The operator Êz has a clear interpretation in terms of the graph
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state it acts on: it determines the adjacency of any pair of vertices in the graph. On the other

hand, Êx and Êy do not have a clear interpretation in terms of the graph state at present.

We may now define edge operators Êx
i j, Ê

y
i j, and Êz

i j in analogy with (98)-(100):

Êx
i j = Î⌦i�1 ⌦ Êx ⌦ Î⌦N�i, (108)

Êy
i j = Î⌦i�1 ⌦ Êy ⌦ Î⌦N�i, (109)

Êz
i j = Î⌦i�1 ⌦ Êz ⌦ Î⌦N�i. (110)

VII.D.2 Construction of Graph Ising and Heisenberg Hamiltonians

We now construct graph state Hamiltonians in analogy with the Hamiltonians of the Ising

and Heisenberg models using the previous correspondence of spin and graph Hilbert spaces.

We make the correspondence Êi ! Ŝi (with i = x,y,z) between operators and ignore

normalization constants because they can be absorbed into the coefficients in the graph

Hamiltonians. The graph Hamiltonians ĤI and ĤH corresponding to the Hamiltonians of the

Ising and Heisenberg models of ferromagnetism (97) and (101) are then

ĤI =� Â
i j,kl

Ji j,klÊz
i jÊ

z
kl �µ Â

i j
hi jÊz

i j, (111)

ĤH =� Â
i j,kl

(Jx
i j,klÊ

x
i jÊ

x
kl + Jy

i j,klÊ
y
i jÊ

y
kl + Jz

i j,klÊ
z
i jÊ

z
kl)�µ Â

i j
hi jÊz

i j. (112)

Assuming that only adjacent edges can interact, in analogy with the nearest neighbor interaction

approximation we adopted in the Ising and Heisenberg models of ferromagnetism, we may

rewrite the sum over adjacent edges i j and jk, which yields

ĤI =� Â
i j, jk

Ji j, jkÊz
i jÊ

z
jk �µ Â

i j
hi jÊz

i j, (113)

ĤH =� Â
i j, jk

(Jx
i j, jkÊx

i jÊ
x
jk + Jy

i j, jkÊy
i jÊ

y
jk + Jz

i j, jkÊz
i jÊ

z
jk)�µ Â

i j
hi jÊz

i j. (114)

At this point, the Hamiltonians (113) and (114) are not written in terms of the edge creation

and annihilation operators â†
i j and âi j defined in section VI. We must now relate the edge
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operators Êx
i j, Ê

y
i j, and Êz

i j to the edge creation and annihilation operators. We do this by

developing edge ladder operators Ê±
i j in analogy with the spin ladder operators Ŝ±. Extending

the definition of the spin ladder operator (87) to the edge operators, we obtain

Ê±
i j = Êx

i j ± iÊy
i j. (115)

The ladder operator Ê+
i j creates an edge between vertices i and j if they are non-adjacent and

otherwise deletes the edge state, and the ladder operator Ê�
i j deletes an edge between vertices i

and j if they are adjacent and otherwise deletes the edge state. This suggests an association

between the ladder operators Ê+
i j and hatE�

i j and the edge creation and annihilation operators

â†
i j and âi j:

â†
i j ! Ê+

i j = Êx
i j + iÊy

i j, (116)

âi j ! Ê�
i j = Êx

i j � iÊy
i j. (117)

Solving the simultaneous equations (116) and (117) for Êx
i j and Êy

i j yields

Êx
i j =

â†
i j + âi j

2
, (118)

Êy
i j =

â†
i j � âi j

2i
. (119)

We may then write Êz
i j using the commutation relation [Êx, Êy] = iÊz (we extend the spin

commutation relations directly to the edge operators via the correspondence of spin and edge

Hilbert spaces), (118), and (119):
Êz

i j =
[â†

i j, âi j]

2
. (120)

We also rewrite the edge operators Êx and Êy by multiplying (118) and (119) by

{a†
i j,ai j}= a†

i jai j +ai ja†
i j = 1 (see (57)), which yields

Êx
i j =

N̂i jâ†
i j + âi jN̂i j

2
, (121)

Êy
i j =

i(âi jN̂i j � N̂i jâ†
i j)

2
. (122)
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Substitution of (120)-(122) into the Hamiltonians (113) and (114) gives the graph Ising and

Heisenberg Hamiltonians:

ĤI =� Â
i j, jk

Ji j, jk(N̂i jN̂ jk � N̂i j(1� N̂ jk)� (1� N̂i j)N̂ jk +(1� N̂i j)(1� N̂ jk))

�µ Â
i j

hi j(2N̂i j �1),
(123)

ĤH =� Â
i j, jk

Jx
i j, jk(â

†
i j(1� N̂i j)N̂ jkâ†

jk + â†
i j(1� N̂i j)(1� N̂ jk)â jk + âi jN̂i jN̂ jkâ†

jk

+ âi j(N̂i j(1� N̂ jk)â jk)+ Jy
i j, jk(âi jN̂i jN̂ jkâ†

jk + â†
i j(1� N̂i j)(1� N̂ jk)â jk � âi jN̂i j(1� N̂ jk)â jk

� â†
i j(1� N̂i j)N̂ jkâ†

jk + Jz
i j, jk(N̂i jN̂ jk � N̂i j(1� N̂ jk)� (1� N̂i j)N̂ jk +(1� N̂i j)(1� N̂ jk))

�µ Â
i j

hi j(2N̂i j �1). (124)

VII.E Application of Graph Quantum Mechanics to Quantum Gravity

Now that we have developed a description of quantum dynamics of graphs with the second

quantization of graph quantum mechanics, we now discuss how the quantum graph theory may

be applied to quantum gravity and cosmology. We summarize and elaborate on the discussion

provided in Konopka’s work.24 This work considers a quantum graph of some number of

vertices N whose dynamics may describe the discrete spacetime of the universe. We quantize

spacetime by embedding this graph into a spacetime manifold. The work specifies a quantum

Hamiltonian for this graph which can be adjusted so that it favors a ground state for the graph

with specific graph properties. Statistical mechanics can be used to describe the dynamics

described by this Hamiltonian. The work discusses two dominant thermodynamic phases of the

graph, a high temperature and low temperature phase. In the high temperature phase, the graph

is highly connected; most or all of the pairs of vertices on the graph are adjacent. In the

extremely high temperature limit, the graph is a complete graph K(N). Recall that the vertices

of a graph represent the constituents of space and edges represent relationships between them.

In this context, we consider two vertices connected by an edge to be separated by the
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fundamental quantum of distance set in the discrete spacetime. Thus, the points of space are

highly connected to each other and there is no notion of locality in space. In addition, the graph

contains a large number of degrees of freedom due to the high connectivity of its vertices. The

large number of degrees of freedom of the graph makes it more difficult to embed these graphs

into lower-dimensional spaces. For the same reason, it is more difficult to integrate known

physics theories (which have much fewer degrees of freedom than typical high-temperature

graphs which describe spacetime) into the discrete spacetime these graphs describe. This is

important because other physics theories allow us to integrate physical properties into the

discrete spacetime. For instance, quantum field theory describes matter as the excitations of

fields which permeate spacetime. We would like to integrate field excitations into the discrete

spacetime emerging from the graph quantum theory. In Konopka’s work,24 a dynamical

quantum graph theory is developed which associates a spin-1-like edge Hilbert space with

every pair of vertices in a graph. In this Hilbert space, there are three possible states for edges,

which are analogous to the spin-1 triplet spin states. The dynamical evolution of the graph

allows this degree of freedom in edges to constitute a matter field excitation on a lattice, akin to

one seen in a lattice quantum field theory, leading to a potentially viable description of matter

in discrete spacetime.

In the low temperature phase, the graph approaches a ground state where only a small

subset of edges are defined on the graph. Thus, the graph is less connected than it is in the high

temperature phase, and locality emerges in space. In addition, it becomes easier to embed these

graphs into lower dimensional space and integrate known physics theories into the resulting

discrete spacetime. In Konopka’s work,24 a Hamiltonian is constructed which admits

dynamical degrees of freedom which yield a simple gauge theory on the discrete spacetime.

This gauge theory can constitute matter field excitations on the spacetime and thus integrate

matter into discrete spacetime.

55



It is clear that the description of graph dynamics presented in Konopka’s paper24 may

provide a description of the emergence of discrete spacetime in the early universe. The universe

was extremely hot in its early stages. The model predicts that there was no meaningful notion

of spacetime geometry in the early universe because the high temperature phase of graphs do

not admit a description of spacetime with its expected properties, such as locality. However, as

the universe cooled, the model predicts that the low temperature phase of graphs is more

ordered than the high temperature one, and typical notions associated with spacetime emerge.

In addition, the smaller number of degrees of freedom in the space may cause physics described

by current physics theories to arise. For example, quantum field theories such as the Standard

Model may now arise in the low temperature phase of spacetime, leading to the emergence of

matter.

There are two noteworthy advantages of applying the quantum mechanical graph formalism

for describing the evolution of the universe. First, the highly connected graph which describes

the early universe may provide an alternative to cosmological inflation for resolving the horizon

problem which is less fine-tuned. The horizon problem is concerned with explaining the

homogeneity of the universe. This is difficult because distant parts of the universe could never

have come into contact with each other, given the current age of the universe. Cosmological

inflation may provide an explanation for the homogeneity of the universe, but it requires

unnatural initial conditions for the universe. On the other hand, the graph theory explains the

homogeneity of the universe by the high interconnection of the complete graph describing the

early universe; all points in the universe were in causal contact near the beginning of the

universe because all points in the complete graph describing spacetime in the early universe are

connected to every other point. Thus, when the universe cooled, all points were already in

contact and could reach thermal equilibrium, explaining the homogeneity of the universe.24

In addition, the graph emergent quantum gravity paradigm offers great flexibility in tuning
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the description of the early universe. The graph Hamiltonians presented in Konopka’s work24

and in this thesis have parameters which may be adjusted so that the universe evolves in a very

specific way as it cools. This flexibility is important for tuning the theory to experimental input.

The graph quantum theory developed in this thesis builds on the previously discussed

developments because it ensures that any quantum gravity or cosmology theory arising from the

graph quantum theory is coordinate system independent, as an emergent quantum gravity

theory should be. By starting with unlabeled graphs in constructing the quantum theory,

coordinate system independence is incorporated into the theory from the start. In addition, the

Ising and Heisenberg Hamiltonians presented in this thesis provide another possibility for graph

state dynamics which may be used to construct an emergent quantum gravity theory.
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VIII CONCLUSION

This thesis developed two quantum mechanical theories of finite graphs similar to those

derived in Konopka’s work 2 which account for the vertex permutation invariance of graphs.

These quantum theories may be used to model discrete spacetime in quantum gravity.

Properties of finite graphs relevant to the quantum mechanics of graphs were introduced, and

the first and second quantization of quantum mechanics were reviewed. The first quantization

of graph quantum mechanics was developed. It was found that the antisymmetrization of graph

states is complicated by the requirement that edge states be described by two quantum numbers.

It was shown that the sum of states produced by acting all vertex permutations in a traversal of

the cosets SN/GG on a base state and subsequently multiplying by the sign of the permutation

applied gives the antisymmetrized graph state. The second quantization of graph quantum

mechanics was also developed. Edge creation and annihilation operators were defined in

analogy to particle creation and annihilation operators. Second quantization operators for edge

number, vertex degree, graph complement, and graph unit sphere were developed in terms of

the edge creation and annihilation operators. Finally, a method for describing graph state

dynamics in the second quantization of graph quantum mechanics was developed by drawing

an analogy to the Ising and Heisenberg models for magnetic systems. These models were

introduced then connected to the quantum theory of graphs. Two model Hamiltonians

describing graph state dynamics were then derived in analogy with the Ising and Heisenberg

Hamiltonians.

We propose four routes for future work on the graph quantum mechanical formalism. First,

we would like to elaborate on graph state dynamics. In this thesis, we derived two graph

Hamiltonians which describe dynamics in the second quantization quantum graph formalism

without actually applying them to make dynamical predictions about graphs. We hope that

future work will explore the consequences of the Ising and Heisenberg Hamiltonians. This will
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allow us to test the viability of the graph dynamics under these Hamiltonians for describing

discrete spacetime. In addition, we would like to construct additional graph state Hamiltonians,

including those which live in different graph Hilbert spaces. In this thesis, we drew an analogy

between the spin-1/2 Hilbert space and the edge state Hilbert space and corresponded spin up

and down states with vertex adjacency and nonadjacency states. However, we may also draw

analogies between higher spin Hilbert spaces and edge states. In Konopka’s work,24 a spin-1

Hilbert space is associated with an edge Hilbert space, where the spin-0 state corresponds to a

non-adjacency state and the three spin-1 states correspond to three distinct adjacency states.

This is unlike the spin-1/2-like edge Hilbert space considered in this thesis, which only has one

possible edge state. Constructing edge Hilbert spaces in analogy with other finite-dimensional

Hilbert spaces (e.g. spin Hilbert spaces) may provide a means for incorporating additional

degrees of freedom in the discrete spacetime emergent from graphs in the quantum graph theory

not considered in this thesis. It is hoped that more complex edge Hilbert spaces may be

formulated and Hamiltonian operators may be defined on them to explore different kinds of

emergence of discrete spacetime from the quantum graph theory. We would also like to

elaborate more on how graph quantum statistics manifest themselves in graphs. In particle

quantum mechanics, the symmetry of the boson wavefunction leads to Bose-Einstein

condensation of bosons and the anti-symmetry of the fermion wavefunction leads to Pauli

exclusion. We expect that the symmetry and antisymmetry of boson and fermion graph

wavefunctions will lead to some observable consequence on graph states similar to

Bose-Einstein condensation and Pauli exclusion. We hope that future work may elucidate how

graph statistics manifest themselves in the observable properties of graphs. Finally, we would

like to evaluate the credibility of the graph quantum mechanics paradigm for constructing

emergent spacetime. In this thesis, we have used graphs as objects with which spacetime may

dynamically emerge. However, we have not considered if the emergent phenomena arising

from these graphs may lead to a viable description of discrete spacetime from which a quantum
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gravity theory may be based. We hope that future work may assess the viability of the graph

emergent paradigm for constructing discrete spacetime and, more generally, for constructing a

quantum gravity theory.
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