
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Theses Master's Theses and Graduate Research

Fall 2023

Detecting the Onion Routing Traffic in Real-Time by using Detecting the Onion Routing Traffic in Real-Time by using

Reinforcement Learning Reinforcement Learning

Dazhou Liu
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_theses

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation
Liu, Dazhou, "Detecting the Onion Routing Traffic in Real-Time by using Reinforcement Learning" (2023).
Master's Theses. 5459.
DOI: https://doi.org/10.31979/etd.jham-bb2s
https://scholarworks.sjsu.edu/etd_theses/5459

This Thesis is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU
ScholarWorks. It has been accepted for inclusion in Master's Theses by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_theses
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_theses?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F5459&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F5459&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses/5459?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F5459&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

DETECTING THE ONION ROUTING TRAFFIC IN REAL-TIME BY USING
REINFORCEMENT LEARNING

A Thesis

Presented to

The Faculty of the Department of Computer Engineering

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Dazhou Liu

December 2023

© 2023

Dazhou Liu

ALL RIGHTS RESERVED

The Designated Thesis Committee Approves the Thesis Titled

DETECTING THE ONION ROUTING TRAFFIC IN REAL-TIME BY USING
REINFORCEMENT LEARNING

by

Dazhou Liu

APPROVED FOR THE DEPARTMENT OF COMPUTER ENGINEERING

SAN JOSÉ STATE UNIVERSITY

December 2023

Younghee Park, Ph.D. Department of Computer Engineering

Stas Tiomkin, Ph.D. Department of Computer Engineering

Mahima Agumbe Suresh, Ph.D. Department of Computer Engineering

ABSTRACT

DETECTING THE ONION ROUTING TRAFFIC IN REAL-TIME BY USING
REINFORCEMENT LEARNING

by Dazhou Liu

 Anonymous networks have been popularly utilized to protect user anonymity and

facilitate network security for a decade. However, such networks have been a platform for

adversarial affairs and various network attacks including suspicious traffic generators. As a

result, detecting anonymous network traffic is one critical task to defend a network against

unpredictable attacks. Many new methods using machine learning and deep learning

techniques have been proposed. However, many of them rely heavily on a vast amount of

labeled data and have complicated architectures. Since network traffic always fluctuates

under different network environments, those techniques may degrade in performance due to

the network dynamics in real time.

 Aiming to mitigate reliance on labeled data and simplify the structures of machine

learning models, this study introduces a lightweight system to detect real-time anonymous

network traffic leveraging the principles of reinforcement learning. Initially, the historical

traces of anonymous traffic are analyzed to identify the crucial attributes that characterize

anonymous and regular network traffic. Building on these important attributes, we design

three components within the reinforcement learning framework: states, actions, and rewards.

More importantly, decision-making thresholds that reflect the system’s observations are set.

Operating autonomously, the system employs these elements to discern network traffic

categories in an unsupervised mode. Empirical results demonstrate that the system can

identify patterns in anonymous traffic with an accuracy rate surpassing 80%.

v

ACKNOWLEDGEMENTS

 Foremost, I want to express my sincere gratitude towards Dr. Younghee Park, for

supplying the precious guidance along the path. I would also like to thank Dr. Stas Tiomkin

and Dr. Mahima Agumbe Suresh for providing the invaluable insights.

 Lastly, I’d express an appreciation to my family for their support.

vi

TABLE OF CONTENTS

List of Tables ... viii

List of Figures .. ix

List of Abbreviations ... x

1 Introduction .. 1
1.1 General Trends of Anonymous Network ... 1
1.2 Motivations .. 3

2 Related Work.. 5
2.1 Overview of Tor and Darknet .. 5

2.1.1 Tor Network ... 5
2.1.2 The Darknet .. 6

2.2 Detecting Tor traffic by Supervised Learning ... 7
2.3 Reinforcement Learning ... 9

2.3.1 Value-Based Learning ... 10
2.3.2 Policy-based Learning ... 11
2.3.3 Applications in the Network Environment ... 12

3 Methodology .. 14
3.1 Network Environment ... 14

3.1.1 Information to be Extracted .. 14
3.1.2 Environment Descriptions ... 14

3.2 Proposed Detection Model ... 16
3.3 Threshold Setting ... 19
3.4 State Transitions .. 20

3.4.1 Detection Model Illustrations .. 20
3.4.2 Detection Algorithm .. 22

4 Experiments and Evaluations ... 24
4.1 Dataset Processing ... 24

4.1.1 Cleaning and Preprocessing .. 25
4.1.2 Label Encoding ... 26

4.2 Feature Selection Experimentation .. 26
4.2.1 Constructing the Action Space ... 26
4.2.2 Hyper-Parameter Setting ... 28
4.2.3 Feature Ranking Results .. 29

4.3 Reward Function Experimentation .. 31
4.3.1 Hyperbolic Tangent-Based Reward Function ... 31

4.4 Threshold Probing .. 34
4.5 Results of Model Testing ... 35
4.6 Model Comparisons ... 37

vii

5 Supplemental Designs .. 39
5.1 Reward Function and Threshold Setting ... 39

5.1.1 Linear Regression-Based Reward Function .. 39
5.1.2 Weighted Mean-Based Threshold ... 40

5.2 MDP Formalization ... 40

6 Future Work ... 41

7 Conclusions .. 42

Literature Cited .. 43

viii

LIST OF TABLES

Table 1. Summary of Differences between the Internet and Darknet 6

Table 2. Action Space ... 18

Table 3. Raw Dataset .. 25

Table 4. Final Dataset ... 26

Table 5. Random Forest Classifier Parameters ... 30

Table 6. Feature Rankings by RFE and RFECV ... 30

Table 7. Feature Rankings by SelectKBest and RF .. 30

Table 8. Weights Results by RFE and RFECV .. 33

Table 9. Weights Results by SelectKBest and RF .. 33

Table 10. Comparison of Model Performance .. 38

Table 11. Importance Ranking by Random Forest ... 39

ix

LIST OF FIGURES

Figure 1. The network environment with mixed anonymous and regular network
traffic. .. 15

Figure 2. Scheme description. .. 16

Figure 3. Threshold interval. .. 19

Figure 4. Summary of model transitions (T1: move to Tor state (r ≥ Tor
threshold), T2: move to non-Tor state (r ≤ non Tor threshold), T3: move
to ambiguous state (non Tor threshold < r < Tor threshold)). 21

Figure 5. Transitions at the ambiguous state. ... 22

Figure 6. Accuracy trend of random forest classifier regarding number of features. 28

Figure 7. True positive and true negative curve. .. 34

Figure 8. Confusion matrix of detection accuracy. (Note that Tor threshold=-0.1
and Non-Tor threshold=-0.3). ... 36

Figure 9. Reward value distributions. ... 37

x

LIST OF ABBREVIATIONS

Tor - The Onion Router
IP - Internet Protocol
ML - Machine Learning
MDP - Markov Decision Process
TCP - Transmission Control Protocol
IDS - Intrusion Detection System
VPN - Virtual Private Network
DNS - Domain Name Service
API - Application Programming Interface

1

1 INTRODUCTION

1.1 General Trends of Anonymous Network

 Anonymous networks play an important role in keeping a user’s identity secret. Through

these networks, both users and servers can communicate without disclosing identity-related

information. Existing anonymous networks include the Onion Routing [1], Mix Network [2],

and the Garlic Routing [3], all of which are designed to decouple the identities of the source

and destination entities. Furthermore, encryption techniques have been prevalent and served

as the foundation of secure communications [4]. When coupled with these encryption

techniques, anonymous networks have advanced the level of privacy.

 The demands for exploiting anonymous networks and visiting hidden network spaces

surged. Approximately two million users accessed Tor and half a million users accessed

hidden services via bridge, in the first quarter of 2020 [1]. Akoki et al. collected more than

2.3 million dark web pages and figured out that the dark web has become larger and more

complex since June 2018 [5]. Investigations into the Tor network revealed that a broad range

of illegal services and items, such as file sharing, ransomware panels, or counterfeits, have

been circulating [6]. By abusing anonymous networks, the Tor network has been a practical

tool for attackers to engage in criminal activities, such as malicious code distributions. All

darknet-related traffic is assumed to be suspicious or malicious, due to the passive

configuration of darknet [7]. Based on this assumption, the authors proposed to detect threats,

such as Distributed Denial of Services (DDoS), by evaluating darknet traffic. These trends

imply that anonymous traffic can be a sign of attacks.

2

i=1

 To prevent penetrations, some systems are configured to block all anonymous traffic.

Nonetheless, this action is detrimental to legitimate users who are privacy-conscious.

Another countermeasure is to develop a blacklist of the IP addresses belonging to servers

related to anonymous traffic [8]. When encountering suspicious traffic, the IP address of the

incoming traffic is compared against each blacklisted IP address. However, this approach

performs poorly when the blacklist is outdated. Furthermore, the extraction of blacklists by

filtering technologies is expensive [9]. To improve the efficiency of detecting anonymous

traffic, researchers inspect anonymous traffic based on statistics about packet headers and

stream patterns [4].

 Recently, machine learning and deep learning-based methods have been practical tools for

analyzing anonymous traffic. Extensive studies have been on supervised learning [4], [10]–

[12]. In supervised learning approaches, the objective is to learn the approximation of P(y|x),

given datasets in the form of [xi, yi]n, where xi is the feature set and yi is the label set [13].

Within supervised learning algorithms, classifiers have been heavily employed to compute

boundaries that divide samples into separate regions. In the Deep Learning field, classifiers

are built with complicated structures and can process features in high dimensions. For

instance, Convolutional Neural Networks are efficient in compressing and extracting

information from two-dimensional feature spaces. Recurrent Neural Networks can learn

features from sequential data and capture temporal characteristics.

 Although classifiers are predominantly used, shortcomings exist when those models are

deployed in real-time. For instance, in the realm of IDS, certain deep learning models show

vulnerability to obfuscated features of network traffic and struggle to adapt to dynamic

3

network patterns [14]. In terms of performance evaluation, some ML and Deep Learning-

based models display a high False Positive Rate and lower F1-score in darknet traffic

classification [12]. What’s more, due to the limited availability of public datasets, researchers

have difficulty accessing data about anonymous network traffic [15], [16].

 Consequently, training detection models can be challenging. In light of these limitations,

this paper proposes a reinforcement learning-based system for the detection of anonymous

Tor traffic. By adopting an MDP framework, we defined the states, actions, and rewards to

form a tuple. Based on the tuple, the proposed model takes actions, obtains reward values,

and transits between states. Additionally, we analyze the distributions of the reward values

and determine a threshold value for anonymous traffic and one for regular traffic. By

comparing the reward value with the predetermined threshold, the agent decides whether the

traffic is anonymous, regular, or ambiguous in real time.

1.2 Motivations

1. Many Tor traffic analysis methods rely on supervised learning. While these

supervised models are highly efficient in classifying network traffic, their efficacy

can be constrained by the scarcity of training data. In response, this study introduces a

real-time unsupervised detection tool. The objective is to design an unsupervised

detection tool with a small amount of data and yet exhibit an enhanced performance

in circumstances with limited training data and labels.

2. The labeled darknet dataset, or CIC-Darknet-2020, provides historical traces related

to anonymous and regular traffic [10]. Those traces were generated by online

activities, including streaming, chatting, and browsing on platforms like Facebook

4

and Skype [4]. Rather than building intricate supervised models, we focus on

analyzing and extracting the most relevant features of anonymous traffic.

3. Although network flows exhibit unpredictability, temporal dynamics can be observed

between sequences of packets. Reinforcement learning methods have been effective

in addressing sequential decision-making problems. To this end, a system adopting a

deterministic MDP framework is developed for real-time monitoring and detection of

anonymous traffic. This system is expected to interact with the network environment

without the need for labeled training data.

 The paper’s structure and content are outlined as follows. The related work section

discusses the technical details of onion routing, introduces supervised learning-based

detection methods for anonymous traffic, and explains applications of reinforcement learning

frameworks to the network domains. Next, the methodology section describes the proposed

reinforcement learning-based system. The experimentation and evaluations conducted are

explained in the experiment section. Finally, the future work and conclusions summarize

future scopes and the proposed system.

5

2 RELATED WORK

2.1 Overview of Tor and Darknet

2.1.1 Tor Network

 The intention of the Tor network is to preserve anonymity. In turn, Onion Routing is

designed as a distributed overlay network, aiming to anonymize TCP-related activities such

as web browsing and messages sending [1]. Further, the Tor network consists of relays that

are run by volunteers spanning the globe [17]. Each relay operates as a router that facilitates

the reception of incoming traffic and the routing of outbound traffic to the intended

destination.

 To achieve anonymity, data are routed through a chain of no less than three relays, and

each relay in a chain is only aware of its immediate predecessor and successor [1]. This

design ensures that no intermediary can deduce the identity of the destination entity from the

source entity, and vice versa.

 To ensure the confidentiality of routed data, the Tor network enforces multi-layer

cryptography. The layered cryptography resembles the structure of an onion. When a client,

such as the Tor browser, transmits data through the Tor network, the local proxy encrypts the

data layer by layer. When a relay in the Tor network receives data, it decrypts one of the

layers.

 As a result of the routing and encrypting mechanism, data routed through the Tor

network attains a high level of anonymity and privacy.

6

2.1.2 The Darknet

 In addition to communicating with entities like YouTube, the Tor network hosts servers

that maintain web pages and offer services to Internet users. Those websites are known as

Onion Services. The network of servers that support Onion Services can be considered as the

darknet. As the darknet is restricted to be accessed through infrastructures like the Tor

network, the Tor browser has become a prevalent tool for accessing the darknet.

Differentiating Tor and darknet traffic is crucial for cybersecurity. By examining the open

source codes of the Tor browser [17], four differences between darknet and Tor were

identified. These characteristics include the locations of destination servers, the number of

relays in a circuit, IP address, and DNS resolution.

 For the locations of destination servers, the Tor network directs user data to servers

outside the Tor network (e.g., YouTube) and within the Tor network (Darknet). The feature of

circuit length describes the path to a public server or a darknet server. Specifically, the path to

a public server consists of three Tor relays while the path to a darknet server contains six Tor

relays. As for the IP address, the darknet servers conceal their IP address from the clients. As

for DNS resolution, visiting servers outside the Tor network requires that the clients handle

DNS resolution through the local proxy, or the exit relay resolves DNS on behalf of the

client. However, communicating with darknet servers does not involve DNS resolution.

Table 1 summarizes the four features.

Table 1
Summary of Differences between the Internet and Darknet

Server Location Circuit Length Server IP Address DNS Resolution
Surface Webs

Darknet
3 nodes
6 nodes

Disclosed to clients
Hidden to clients

By clients or exit nodes
No Resolution

7

 In summary, the Tor network has been built to refrain from traffic analysis. When the

attackers abuse the Tor network, the security of information system resources is at risk. By

examining the open source codes of the Tor browser, four features that characterize the

darknet are unveiled. The relevant statistics provide more insights into detecting darknet

traffic.

2.2 Detecting Tor traffic by Supervised Learning

 As discussed in Section 2.1, reading or tracing anonymous Tor traffic is highly

complicated. This aspect poses challenges to identifying Tor traffic from mixed network

traffic. To address this issue, researchers extracted flow-level features and developed

supervised learning-based approaches.

 Lashkari et al. generated eight types of network traffic (e.g., browsing, chat, streaming)

and captured Tor traffic between the client and entry node [11]. In their approach, eight

categories of timing-related statistics were extracted. Those features include the amount of

time between the arrival of two packets, the amount of time during which a flow remains

active or idle, flow duration, and the number of bytes or packets in one second. Leveraging

these features, Zero Rule, C4.5 Decision Tree, and K Nearest Neighbor were applied to

classify network traffic into either Tor or normal class. Based on analysis, the C4.5 Decision

Tree can detect 93.4% of Tor samples. Their findings indicate that timing-based features can

be used to unveil Tor traffic patterns, even without accessing the packet contents.

 Lashkari et al. merged the VPN-nonVPN dataset [4] and the Tor-nonTor dataset [11] to

create a comprehensive darknet dataset [10]. Based on the dataset, they proposed a deep

learning model in the form of a two-dimensional CNN. In the feature engineering process, 61

8

features were extracted based on descending feature importance scores generated by random

forest. Subsequently, these features were harnessed to construct grayscale images with 64

pixels. Each pixel corresponds to one of the 61 feature values. By using convolution

techniques, the deep learning model can classify Tor and non-Tor traffic with 95% test

accuracy.

 Mohanty et al. combined multiple classifiers by bootstrap aggregating to form an

ensemble model [12]. In specific, the ensemble model comprises a base learner and a meta-

learner. The first phase base learner is formed by the K Nearest Neighbor, Random Forest,

and Decision Tree models. The succeeding meta-learner makes predictions by Logistic

Regression. Evaluated on binary classification tasks, the stacking model is declared to

achieve 98.89% accuracy.

 To address the reliance of many classifiers on extensive labeled training data, an

enhanced decision tree algorithm was introduced [18]. The authors identified four specific

features that serve as the unique characteristics of Tor traffic. These four features are entropy

related to packet length, frequency of appearance of packets with a length of 600 bytes, the

number of packets with zero data in the first 10 packets, and the average time between the

arrival of two packets. For the supervised model, a decision tree was constructed. Instead of

adopting the splitting attributes in traditional C4.5 and ID3 decision trees, information gain is

employed to select the most informative attributes.

 Specifically, attributes with the highest information gain are chosen as the splitting

attributes. During the testing phase, the authors collected network traffic and gathered 50,000

9

samples. Utilizing the four proposed features, the results indicate that the modified decision

tree achieved an accuracy of up to 99% for detecting Tor traffic.

 Due to privacy concerns and the limited availability of the dataset on anonymous traffic,

researchers often gather private data or generate traffic within simulated environments [15].

In response to this challenge, the Anon17 dataset was introduced, logging features associated

with Tor and other anonymous network traffic instances [15]. These features encompass

packet header information, packet counts, and length in bytes of each flow. Leveraging the

Anon17 dataset, the researchers probed the extent to which anonymous traffic can be

identified by ML techniques [16]. The classification algorithms include Naive Bayes,

Bayesian Networks, C4.5, and random forest. The results discern that classifiers can classify

Tor and other types of network traffic instances with an accuracy closing to 100%.

 In summary, the majority of supervised models designed for detecting anonymous Tor

traffic rely on classification tasks. The efficacy of these models depends on the quality of data

preprocessing, feature engineering, and the training process. When those models are trained

with sufficient data and crafted features, they can detect anonymous traffic with an accuracy of

over 90%. Conversely, the performance of supervised models may degrade due to inadequate

data and non-relevant features. This aspect prompts the exploration of alternative decision-

making paradigms.

2.3 Reinforcement Learning

 Reinforcement learning involves the domain of sequential decision-making. In sequential

decision-making problems, the goal includes learning what actions to execute at a state such

that the expected returns are maximized. The mapping of a state to an action is referred to as

10

a “policy”. Unlike instructive approaches, reinforcement learning-based methods involve

assessment of their behaviors. The evaluations of policies are quantified in terms of a value or

the probability of taking an action at a state. Based on the evaluation strategy, reinforcement

learning-based methods can be divided into two categories: value-based and policy-based

learning.

2.3.1 Value-Based Learning

 Upon following a policy, the quality of the policy is evaluated by a value metric. The

value metric represents the expected cumulative return of a state or a state-action pair. In

value-based learning, the value of a state or a state-action pair is encapsulated as a value

function and iteratively updated. In policy iteration, the value of a state can be estimated by

the Bellman equation [19]

v(s) = ∑π(a|s) ∑ p(s′, r|s, a)[r + γv(s′)] (1)
a s′

,r

 In Equation 1, each available action in a state is evaluated by summing the probability of

transitioning to each subsequent state, multiplied by the immediate reward plus the

discounted reward of the next state. The term ∑s′,r p(s′, r|s, a)[r + γv(s′)] implies that the

expected cumulative return sums the values of all potential subsequent states upon executing

an action. Additionally, the estimation requires knowledge about the transition probability to

the next state, denoted as p(s′, r|s, a).

 When the dynamic is not fully understood, model-free learning is an approach to solving

MDP problems. Q-learning and State-Action-Reward-State-Action (SARSA) utilize Q-

values to learn optimal policies that lead to the highest expected returns. Q learning methods

11

leverage off-policy temporal difference (TD) error for learning. The temporal difference

formula for updating a Q value is as follows [20]:

Q(S, A) ← Q(S, A) + α[R + γmaxaQ(S , a) −Q(S, A)] (2)

The Q value of the action taken at the current state is updated by the TD error of

R + γmaxaQ(S′, a) −Q(S, A).

Equations 1 and 2 are practical in scenarios where the state-action space is finite and discrete.

To solve problems involving continuous state-action spaces, researchers studied substituting

tables with neural networks. The reliance on crafted features and constraints posed by low

dimensional state space was indicated by [21]. The authors subsequently introduced Deep Q

Network to learn policies for controlling Atari 2600 games. Within their model, Q-values are

parameterized as Q(s, a; θi), where θi is the weight set of a convolutional neural network.

The temporal difference formula was harnessed to update the parameters of the neural

network. To alleviate data correlations and stabilize the learning process, the authors

implemented experience replay and target network. When evaluating the Deep Q Network

using Atari games, their framework outperforms human players and baselines in 29 games in

terms of game scores.

2.3.2 Policy-based Learning

 There are situations in which the estimation of values is intractable. One solution is to

parameterize and optimize the policies directly. Such policy optimization approaches include

policy gradient [22] and Trust Region Methods [23]. In policy gradient, the parameterized

policy takes a state vector as the input and outputs the probability distribution of actions.

Next, the gradient of the policy is calculated and the policy is updated by gradient ascent.

12

Trust region policy optimization (TRPO) stabilizes the policy updates by constraining the

magnitude of each update [24]. To make further improvements based on vanilla policy

gradient, Q learning, and TRPO, Proximal Policy Optimization (PPO) was proposed [24]. In

PPO, the data efficiency and reliability of TRPO are further enhanced by clipping the

surrogate objective. At the one-million step benchmark in continuous control tasks, the

results exhibit that PPO outperforms other implementations with the highest episode rewards.

In actor-critic architecture, the actor neural network acts as the policy function and the critic

neural network behaves as a value function that estimates the actor.

2.3.3 Applications in the Network Environment

 Reinforcement learning frameworks have a wide range of applications for optimizing

network topologies and developing counter-attack strategies.

 A reinforcement learning-based approach is developed to make optimal routing decisions

while satisfying security requirements [25]. In the proposed method, each state is represented

as a switch on the data plane of the Software Defined Network. In addition, security devices

are deployed on some of the switches. The goal of the agent is to traverse from the source

switch to the destination switch while avoiding paths that have high latency, jitter, and packet

drop rates. The proposed method utilizes a Q table and defines the reward function as the

weighted sum of delay, jitter, traffic rate, and packet loss.

 Compared to existing link stability-based Q-routing, the results state that the delay time is

reduced, regardless of the number of security constraints. A Deep Q Learning technique is

applied to counter jamming attacks in cognitive radio networks (CRN) [26]. In a CRN system,

the participants include primary users (PU), secondary users (SU), and jammers. In the

13

proposed method, each state is represented as the appearance of PUs and signal-to-

interference-plus-noise ratio (SINR). The agent is an SU and its action is choosing to either

leave the jamming area or defeat the jammer.

 Addressing the limitations of Q learning to large state space, a deep convolutional neural

network is leveraged to approximate the Q values. The result shows that the proposed

method has a faster convergence time and achieved higher SINR, compared with the naive Q

learning-based method.

 A Q learning paradigm is combined with a classifier to develop an IDS [27]. In addition

to the classifier agent, the environment serves as the second agent. The state of the classifier

agent is interpreted by samples in the NSL-KDD dataset, and the action of the classifier agent

is to predict labels. Simultaneously, the action of the environment is to select a state for the

classifier, such that the prediction accuracy of the classifier agent is reduced. In this

adversarial mode, the proposed method has the highest accuracy and lowest prediction time

among other supervised baselines. Whereas, the performance of the proposed method is lower

than that of other reinforcement learning algorithms like the Asynchronous Advantage Actor

Critic (A3C).

 According to the applications of reinforcement learning, we define the actions, states, and

rewards, such that these definitions fit the characteristics of a finite and discrete state-action

space. Based on these definitions, this study develops a value-based approach to detect Tor

traffic.

14

3 METHODOLOGY

 This section explains the network environment in which the proposed detection system is

to be deployed and the adapted MDP framework to detect anonymous traffic.

3.1 Network Environment

3.1.1 Information to be Extracted

 In a network environment, anonymous traffic is expected to be present at any time.

Meanwhile, real-time detection of anonymous network traffic necessitates a comprehensive

understanding of traffic patterns. Rather than conducting deep packet inspections on

individual packets, the system extracts pattern information from a sequence of packets. Each

sequence of packets, akin to a flow, is transmitted between the same source and destination

IP addresses, on the same source and destination port [4]. A flow is transmitted in the forward

direction (FWD) if the source sends packets to the destination [4]. Otherwise, the direction

is backward (BWD).

 Within this framework, the flow-level information includes features such as flow length

in bytes, packet counts, duration of a flow, and the time elapsed between the arrival of

consecutive packets in the FWD or BWD. For instance, the average length of each packet

within a flow can be calculated by dividing the total number of bytes by the total number of

packets. Given that no training data is available in real-time, the system computes those

statistics upon capturing a flow.

3.1.2 Environment Descriptions

 The environment is a dynamic network space constantly receiving traffic. Due to

constraints in dimensionality, Fig. 1 visualizes the environment in two dimensions and

15

displays statistics related to the number of packets. In Fig. 1, each data point corresponds to a

captured flow. The x-axis and y-axis denote the elapsed time since the system’s initiation and

the number of packets in a flow. For instance, at time 0 the system captured a flow comprising

23 thousand packets in the FWD direction. At the 80 milliseconds (ms) mark, the system

captured a flow containing 110 thousand packets in the BWD direction.

Fig. 1. The network environment with mixed
anonymous and regular network traffic.

 Upon initiation, the monitoring procedure is as follows. In the beginning stage, the

system keeps listening on a port and awaits the arrival of network flows. When a flow is

captured, which could occur at 39ms, the system is unable to discern whether this flow is

anonymous. Next, the agent extracts information from each flow’s predefined feature sets. For

instance, it quantifies the packet counts and flow length in bytes, as described in subsection

3.1.1. After obtaining those flow statistics, the environment dispatches a reward signal to the

agent. According to the reward value, the system decides whether the captured flow is

16

ambiguous. After each decision, the agent concludes its evaluation of the current flow and

awaits the analysis of the next arriving flow, which could occur at 40ms. As the proposed

system aims to operate in real-time, it is expected to decide the flow status with shorter than

the time elapsed between consecutive flows.

3.2 Proposed Detection Model

 MDP is a standard framework for addressing problems related to sequential decision-

making [28]. A quadruple (S, A, r, p) can be used to design an MDP environment, where S is

a finite set of states, A is a finite set of actions, p is a transition probability, and r corresponds

to the immediate reward received after executing an action [28].

 Aligning with the tuple, the detection model is designed to emulate the MDP model, as

depicted in Fig. 2. In Fig. 2, the process involves selecting a set of features (e.g. the average

length of packets in a flow and idle time) by the system, according to the current policy.

Next, following the execution of action At, the environment sends the reward to the agent,

leading to a transition to another state. This design addresses the adaption of the MDP

paradigm to the network environment and the interplay between the agent and the

environment.

Fig. 2. Scheme description.

17

 Based on the CIC-Dakrnet2020 dataset [10], the list below summarizes each element in

the quadruple.

1. State S: The state space contains three states: Tor, non-Tor, and ambiguous. The state

space is interpreted as S = {s1, s2, s3}. In S, s1 represents an ambiguous state, s2

represents a Tor state, and s3 represents a non-Tor state. The initial state of the agent

is ambiguous, meaning that the agent has no clue about the behavior of the detected

traffic. As such, the goal of the agent is to identify an answer so as to leave the

ambiguous state. Accordingly, both the Tor and non-Tor states are considered as the

goal states. When reaching the Tor state, the agent assumes that the current traffic is

generated by the Tor network. When transiting to the non-Tor state, the current traffic

flow is recognized as non-Tor. In this design, the conventional labels used for

classification tasks are replaced with these model states, allowing the system to

process the observed network traffic differently.

2. Action A: Rather than assigning labels, the action of the agent is to select features.

The action space is defined as A = {a1, a2, a3, ..., an}, where ai ∈ A and ai = { f1, f 2,

f3, ..., ft}. The subscript n represents the number of actions, and t is the number of

features selected by each action. To reduce the complexity and address the feature

importance, the feature selection techniques provided by the scikit-learn library [29]

are used to select features. To utilize the non-linear attribute of random forest and

reduce overfitting, those selection techniques are chosen as Recursive Feature

Elimination (RFE), Recursive Feature Elimination with Cross Validation (RFE),

Random Forest Classifier, and SelectKBest. Table 2 summarizes the action space.

18

Based on this design, the action space size is four. The first, second, third, and fourth

action is selecting features ranked by RFE, RFECV, Random Forest Classifier, and

SelectKBest, respectively. The number of features along with the selected features by

each action will be discussed in the experiment section.

Table 2
Action Space

Number Action
1 Select features ranked by RFE
2 Select features ranked by RFECV
3 Select features ranked by Random Forest Classifier
4 Select features ranked by SelectKBest

3. Heuristic Reward Function: As an indicator of the consequences of the agent’s

action, the reward function is designed heuristically. The immediate reward is

calculated using a specific formula that involves weighted feature values and a

hyperbolic tangent function. More specifically, it is calculated as taking the linear

sum of weighted feature values as input to the hyperbolic tangent function. This

design of the reward function bounds the values of the reward within the range of -1

and 1. Besides, it can potentially separate Tor and non-Tor samples according to the

thresholds around 0. The reward function formula is as follows:

r(s, a) = tanh(w1 × f1 + w2 × f2 + w3 × f3 + ... + wt × ft) (3)

The Hyperbolic Tangent function, tanh(x), is in the form of:

 (4)

19

where e is the natural exponent and x is the linear sum of the weighted feature

values, as shown in Formula 3.

4. Environment Model: In some MDP problems, the model of the environment is the

transition probability, or P(s next|s, a). Specifically, the model is the conditional

probability of transiting to the next state, given an action a at the current state.

Depending on knowledge about the environment model, the interactions with the

environment can be model-based or model-free. In scenarios such as balancing a

pendulum or humanoid, the environment model can be approximated by principles

such as kinematics. However, an explicit dynamic among the recorded network flows

in CIC-Darknet2020 has not been identified. Thus, the agent is expected to make

decisions and interact with the environment without being aware of the environment

model.

3.3 Threshold Setting

 The introduction of thresholds is a strategy aimed at reducing the reliance on labeled

data, which helps the detection system make a decision. Two thresholds are established: one

for non-Tor traffic and one for Tor traffic. Segmented by the Tor and Non-Tor thresholds,

three intervals are formed: the interval left and right of the non Tor and Tor thresholds along

with the region between the non-Tor and Tor thresholds. Fig. 3 describes the three intervals

formed by the two thresholds.

Fig. 3. Threshold interval.

20

 When the agent chooses an action in response to an observed network flow, the

environment assigns the immediate reward and compares it with the predefined thresholds. If

the reward value is lower than the non-Tor threshold (left of the non-Tor threshold), the agent

classifies the current traffic as non-Tor traffic with certainty. If the reward value is higher

than the Tor threshold (right of the Tor threshold), the agent confidently classifies the current

traffic as Tor traffic. In the third scenario, the reward value falls between the two thresholds

and the agent cannot make a decision. This scenario indicates ambiguity regarding the type

of current traffic. It is worth noting that ambiguous data prompt the need for further

processing. Song et al. state that ambiguous samples impact accuracy negatively and are non-

trivial when the number of data points is huge [30].

 By setting the thresholds, Tor and non-Tor flows can be distinguished in an unsupervised

mode, and the labels are substituted with threshold values.

3.4 State Transitions

3.4.1 Detection Model Illustrations

 Fig. 4 depicts the three states and four actions of the detection model. The nodes labeled

Ambiguous, Tor, and non-Tor represent the three states. The edges illustrate the transitions

between states after applying an action. In Fig. 4, a1 corresponds to the first action in the

action space, which is selecting features ranked by RFE, as shown in Table 2. The actions a2,

a3, and a4 represent the second, third, and fourth actions in the action space. Upon each

action, the reward, r, is calculated according to Equation 3. Based on this three-state graph,

the agent can reach the other two states from arbitrary starting states, covering all three

transition possibilities.

21

Fig. 4. Summary of model transitions (T1: move
to Tor state (r ≥ Tor threshold), T2: move to non-
Tor state (r ≤ non Tor threshold), T3: move to
ambiguous state (non Tor threshold < r < Tor
threshold)).

 At the Tor or non-Tor state, the agent has a single option of applying a1. As depicted in

Fig. 4, taking action a1 results in moving to the other two states or staying in the same state.

For instance, in the non-Tor state, there are three transition possibilities. First, the agent stays

in the non-Tor state if the reward value received is lower than the non Tor threshold. In the

second scenario, the agent moves to the Tor state from the non-Tor state when it receives a

reward value higher than the Tor threshold, as mentioned in Fig. 3. In the third scenario, the

agent moves to the ambiguous state if the reward value is less than the Tor threshold and

higher than the non Tor threshold.

 In particular, Fig. 5 illustrates the agent’s behavior in the ambiguous state. The

ambiguous state indicates that action a1 is not informative to make a decision. Once

transiting to the ambiguous state from the Tor or non-Tor state, the agent applies a2, a3, and

22

Fig. 5. Transitions at the ambiguous state.

a4 sequentially until one of these actions leads the agent to transit back to either the Tor or

non-Tor state. However, if the agent ends up in the ambiguous state after applying the action

a4, the current flow is labeled as anonymous and malicious.

 Overall, an action that results in the agent transiting to the Tor or non-Tor state or staying

in the ambiguous state after applying a4 concludes the current flow.

3.4.2 Detection Algorithm

 Algorithm 1 below describes the transitions between states according to actions and

rewards. At either the Tor or Non-Tor state, the agent labels the current flow and moves to the

next flow. On the other hand, if the agent ends up reaching the ambiguous state, it selects the

other three actions in the action space. Once an action results in a reward value greater than

the Tor threshold or less than the non-Tor threshold, the agent concludes the current flow and

moves to the next flow. If the agent remains in the ambiguous state even after applying four

actions, the traffic statistic is stored in a buffer, and the agent skips to the next flow. Elements

in the buffer require further analysis depending on the policies of the corresponding IDS.

23

 In the implementation phase, the flows are processed in batches to reduce the time

overhead.

Algorithm 1 Transitions Between States
1:
2:

3:

4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:

procedure TRANSITION(threshold Tor, threshold nonTor, f eature set, batch size) ▷ Function
for i in range(0, len(feature set), batch size) do
// Create batches

batch f eatures = f eature set[i : i + batch size]
// Calculate reward value of each sample in the batch

r batch = f irst action(batch f eatures)
for j in range(len(batch features), batch size) do

if r[j] >= threshold tor then ▷ Classified as Tor
State ← Tor

else if r[j] <= threshold non tor then ▷ Classified as non Tor
State ← Non Tor

else ▷ Classified as Ambiguous
r batch = next action(batch f eatures)
while r[j] > threshold non tor and r[j] < threshold tor do

if no actions remaining in action space then
Label (Anonymous && Malicious) ▷ Further Processing

break
State ← Ambiguous
Select next action

24

4 EXPERIMENTS AND EVALUATIONS

 This section delineates the implementation and testing of the proposed framework. At

first, the dataset was cleaned and preprocessed. Second, the feature sets to be used for

constructing the action space were selected. Third, each reward function corresponding to the

respective action is defined. Lastly, the performance of the framework is gauged based on

accuracy.

4.1 Dataset Processing

 The CIC-Darknet2020 dataset is an archived dataset with labels. It summarizes the

features of bidirectional traffic flows generated by the CICFlowMeter [10]. As this dataset is

readily available, our model was developed and tested based on those historical flows. As the

Tor browser is commonly used and anonymous traffic is often encrypted, we encompass Tor

and VPN traffic samples within the realm of anonymous traffic.

 The features can be divided into two categories: time-based features and packet-based

features. Time-based features include packet inter-arrival time, idle time, and byte per

second. Packet-based features encompass statistics about packet size and counts of flags per

flow.

 There are four types of labels: non-Tor, non-VPN, Tor, and VPN. Concerning that Tor

traffic is encrypted, samples labeled as VPN are considered Tor samples. On one hand,

anonymous Tor traffic is regarded as an anomaly. On the other hand, the non-Tor and non-

VPN labels are merged into the non-Tor type. After this amalgamation, two types of labels

remain in the dataset, which are non-Tor and Tor. Table 3 summarizes the raw dataset.

25

Table 3
Raw Dataset

Total Samples Total Features Non-Tor Samples Tor Samples
141530 83 117219 24311

 To elaborate, the number of recorded flows is 141,530. The number of features is 83. The

number of flows labeled as non-Tor and Tor is 117,219 and 24,311, respectively.

4.1.1 Cleaning and Preprocessing

 The raw dataset was imported and converted to a pandas dataframe. Next, the data was

cleaned. In the cleaning phase, rows that contain invalid values, such as infinity and “Not a

Number” are dropped. Then the columns whose entries are all equal to the same value were

discarded. As a result, the number of features is reduced from 83 to 62 and the number of

samples is decreased from 141,530 to 141,483. To further simplify the feature set, the

Feature Selection with Variance Thresholding (VarianceThreshold) technique in Scikit-Learn

library (abbreviated as sklearn) [29] is applied. The VarianceThreshold technique removes

features with a variance below a specified threshold. In the experiment, the threshold is set to

30%. After running VarianceThreshold, four features were discarded, resulting in 58

features.

 The raw dataset is skewed. As shown in Table 3, Non-Tor samples are abundant. On the

other hand, the number of Tor samples is 24,311 and only accounts for 17.18% of the

141,483 labels. To mitigate the bias, the samples indexed at 0-69999 were eliminated. Next,

we generated synthetic data by duplicating 20,000 samples labeled as either Tor or VPN.

26

After processing, the finalized dataset contains 91,483 samples and 58 features. As Table 4

displays, the final dataset contains 47,172 Tor samples, accounting for 48.4% of the 91,483

samples. The number of features is 58.

Table 4
Final Dataset

Total Samples Total Features Non-Tor Samples Tor Samples
91483 58 47172 44311

 Lastly, the order of samples is shuffled to reduce overfitting and bias.

4.1.2 Label Encoding

 Since each label is categorical and stores a string, each label is replaced by an integer of 0

or 1 to follow the Bernoulli Equation. Bernoulli Equation is defined as P(X = 0) = 1 − p and

P(X = 1) = p, where X is a random variable and p is the probability of X being equal to 1.

Since anonymous traffic is defined as an anomaly, Tor labels are replaced with integer 1

(Positive Class). The labels of non-Tor are replaced with 0 (Negative Class). This step is

achieved through the Label Encoding method of sklearn.

 To apply the hyperbolic tangent function to the classification model, the labels belonging

to the Positive Class are converted to 1 while the labels of the Negative Class are converted

to -1. The formula is as follows: label encoding = 2 ×label encoding− 1.

4.2 Feature Selection Experimentation

4.2.1 Constructing the Action Space

 The process of finalizing the action space involves determining the number of features

selected by each action and the number of actions in the action space.

27

 In terms of the number of features selected by each action, this study chose to set this

number within the range of 10 to 15 features. This choice was based on prior experience and

information from earlier research on the classification of Tor traffic. An alternative

perspective is to provide each classifier with as much information as possible, implying that

all 58 features in the dataset would be used. Nevertheless, this setting increases the data

volume that needs to be processed.

 To determine the appropriate number of features to be selected by each action, the study

employs the accuracy metric to evaluate the performance of the Random Forest Classifier.

The evaluation was conducted while increasing the number of features in step of 15.

Additionally, these features were included following the importance score generated by the

Random Forest model after fitting. Fig. 6 delineates the accuracy curve. Initially, the

accuracy increased from 0.9746 by using 15 features to 0.9774 by using 30 features.

Nonetheless, the accuracy ceases to increase when more than 30 features are used. This

observation indicates that increasing the number of features within a certain range contributes

to improving the accuracy. However, an exceeding number of features do not contribute to

improving the performance. According to this phenomenon, the number of features selected

by each action is finalized as 15.

 Regarding the number of actions within the action space, we considered two distinct

approaches: randomly selecting 15 features from 58 features and selecting features with the

top importance scores. When randomly selecting features, the number of combinations by

choosing 15 features from 58 features is estimated to be 2.97 × 1013. A dimension of the

action space on the scale of a trillion is impractical to be solved in discrete cases. The second

28

Fig. 6. Accuracy trend of random forest classifier regarding number of
features.

approach aims to select features based on the importance scores. For this purpose, this study

employed Scikit-Learn APIs of feature selection techniques, including Recursive Feature

Elimination (RFE), Recursive Feature Elimination with cross-validation (RFECV),

SelectKBest, and Random Forest Classifier. Each of these techniques corresponds to a

specific action, effectively reducing the size of the action space to four.

 This configuration concludes the action space construction with four actions and 15

features to be selected by each action.

4.2.2 Hyper-Parameter Setting

 This subsection explains the hyper-parameter settings for the feature selection techniques.

 Given an importance score-based estimator, RFE removes the least important features

recursively until the specified number of features is reached. In the experiment, the specified

29

number of features is 15. Cross Validation can be combined with Recursive Feature

Elimination as Recursive feature Elimination with Cross Validation. The number of cross-

validation in RFECV is set to three for a faster convergence. The SelectKBest tool selects

features with the highest k importance scores ranked by a score function. In the experiment,

the score function utilized is Mutual Information for discrete class. As for the Random Forest

Classifier, it ranks features based on importance scores that are calculated by using entropy

or the Gini coefficient.

 Since the external estimator used for RFE and RFECV is the random forest classifier, the

grid search technique [31] is leveraged to determine the most suitable hyper-parameters. The

criteria to be searched are the number of estimators, the function for measuring the split

quality, the maximum depth, the minimum samples to split, and the minimum samples

required for being a leaf node. Upon multiple running of grid search based on all 58 features,

we decided to adopt the combination of hyper-parameters as displayed in Table 5. As

depicted in Table 5, the bootstrap is set to True, consistent with the default setting. The

criterion for evaluating the quality of node splitting is the Gini index. Each leaf node is

configured to contain at least one sample, while a minimum of ten samples are required to

split a non-leaf node. Lastly, the number of individual trees in the random forest ensemble is

set to 125.

 After grid searching, the random forest classifier is fitted with all 58 features.

4.2.3 Feature Ranking Results

 The resulting features for each action are summarized in Table 6 and Table 7, which form

the first column of Table 2.

30

Table 5
Random Forest Classifier Parameters

Parameters Value
bootstrap True
criterion gini
min_samples_leaf 1
min_samples_split 10
n_estimators 125

Table 6
Feature Rankings by RFE and RFECV

Rank RFE RFECV
1 Bwd Packet Length Min Flow Duration
2 Bwd Packet Length Mean Total Length of Fwd Packet
3 Flow Packets/s Total Length of Bwd Packet
4 Flow IAT Mean Fwd Packet Length Min
5 Flow IAT Max Bwd Packet Length Max
6 Flow IAT Min Bwd Packet Length Min
7 Fwd Header Length Bwd Packet Length Mean
8 Bwd Packets/s Flow Bytes/s
9 Bwd Segment Size Avg Flow Packets/s
10 Subflow Bwd Bytes Flow IAT Mean
11 FWD Init Win Bytes Flow IAT Std
12 Fwd Seg Size Min Flow IAT Max
13 Idle Mean Flow IAT Min
14 Idle Max Fwd IAT Total
15 Idle Min Fwd IAT Mean

Table 7
Feature Rankings by SelectKBest and RF

Rank SelectKBest RF
1 Flow IAT Max Flow IAT Min
2 Flow Duration Idle Max
3 Flow IAT Mean Bwd Packet Length Min
4 Flow Packets/s Fwd Seg Size Min
5 Fwd Packets/s Flow IAT Mean
6 Bwd Packets/s Bwd Segment Size Avg
7 Flow IAT Min Subflow Bwd Bytes
8 Flow Bytes/s Flow Packets/s
9 Average Packet Size Bwd Packet Length Mean
10 Packet Length Mean Idle Mean
11 Packet Length Max Fwd Header Length
12 Packet Length Std Flow IAT Max
13 Packet Length Variance Bwd Packets/s
14 Bwd Segment Size Avg Flow Bytes/s
15 Bwd Packet Length Mean Fwd Packets/s

31

 For RFE, the most important feature is identified as Bwd Packet Length Min while the

feature with the 15th rank is Idle Min. Similarly, for RFECV, the most important feature is

Flow Duration while the feature ranked as the 15th is Flow IAT Mean. Furthermore, there are

common features that are selected by RFE, RFECV, SelectKBest, and RF. Features such as

Bwd Packet Length Min, Flow Packets/s, and Flow IAT Max are consistently determined as

informative for distinguishing between Tor and non-Tor traffic.

 To verify the consistency of the feature selection results across multiple runs of RFE,

RFECV, SelectKBest, and RF, the feature ranking of each run was compared. It is discovered

that approximately 13 out of 15 features were consistently identified in each run, although

their ranking positions may vary. As a result, the features from the last run are adopted as the

final selection.

4.3 Reward Function Experimentation

 Initially, the efforts were on computing the weights of a linear equation such that the

aggregate of weighted features separates Tor and non-Tor samples around a zero threshold.

This approach resembles linear regression. Nonetheless, the empirical findings imply that the

relationship between feature values and the labels is intricate. To address this issue, non-

linearity is introduced to facilitate separating Tor and non-Tor samples around the zero

threshold. Based on the experiment, the hyperbolic tangent function is adopted. The

subsections below discuss the outcomes.

4.3.1 Hyperbolic Tangent-Based Reward Function

 A single-layer neural network with no hidden layer is harnessed to implement the reward

function mentioned in Equation (3). Specifically, the weights of the reward function are

32

derived from the trained neural network. The activation function at the output layer serves as

the function for transformation. In each instance of the single-layer neural network, the input

layer contains 15 neurons while the output layer has one neuron. The hyperbolic tangent

function is employed at the output layer to map the linearly weighted summation of features

onto a single value.

 In preparation for training, the features of each sample undergo standardization to reach

unit variance. The reason for applying standardization is that many feature values have a vast

range. For instance, the idle max feature has a maximum value of 1.44 × 1015, whereas the

Bwd Packet Length Min feature has a maximum value of 1,350. The class of StandardScaler

class of sklearn [29] is leveraged to bring all feature values to the same scale. During the

training phase, each neural network is trained in a supervised manner by using the PyTorch

library. Stochastic gradient descent (SGD) with a learning rate of 0.001 is used as the

optimizer. It is observed that the loss stops decreasing after 30 epochs.

 Consequently, each neural network is trained with 30 epochs. After 30 epochs, it was

found that the weights in each instance of the neural network fluctuated, even when the same

feature set was applied. To determine the influence on the detection accuracy, we tested the

performance of each trained neural network. The result is that varying weights after training

do not reduce the accuracy, provided that the feature sets are used consistently across training

and testing. As a result, the weights produced by the last run are finalized as the weights of

each reward function. The results of the reward functions are recorded in Tables 8 and 9.

 The results showcase that the ranking of weights does not align with the ranking of

feature importance generated by the sklearn feature selection techniques. For instance, within

33

Table 8
Weights Results by RFE and RFECV

Rank W1 a1 (RFE) W2 a2 (RFECV)
1 1.2904 Bwd Packet Length Min 0.2689 Flow Duration
2 -0.0694 Bwd Packet Length Mean 0.1872 Total Length of Fwd Packet
3 -0.0365 Flow Packets/s -0.1440 Total Length of Bwd Packet
4 -0.0984 Flow IAT Mean 0.0584 Fwd Packet Length Min
5 -0.0583 Flow IAT Max -0.1191 Bwd Packet Length Max
6 -0.3272 Flow IAT Min 0.7849 Bwd Packet Length Min
7 0.1684 Fwd Header Length 0.1817 Bwd Packet Length Mean
8 -0.2140 Bwd Packets/s -0.5075 Flow Bytes/s
9 -0.0785 Bwd Segment Size Avg -0.0699 Flow Packets/s
10 0.1425 Subflow Bwd Bytes -0.1312 Flow IAT Mean
11 0.0707 FWD Init Win Bytes -0.2003 Flow IAT Std
12 0.4345 Fwd Seg Size Min -0.1743 Flow IAT Max
13 0.0277 Idle Mean -0.2615 Flow IAT Min
14 -0.2260 Idle Max -0.0326 Fwd IAT Total
15 0.1763 Idle Min 0.2427 Fwd IAT Mean

Table 9
Weights Results by SelectKBest and RF

Rank W3 a3 (SelectKBest) W4 a4 (RF)
1 0.2543 Flow IAT Max -0.0083 Flow IAT Min
2 0.6159 Flow Duration -0.2216 Idle Max
3 -0.3229 Flow IAT Mean 0.1781 Bwd Packet Length Min
4 -0.0131 Flow Packets/s 0.1014 Fwd Seg Size Min
5 -0.2443 Fwd Packets/s -0.1772 Flow IAT Mean
6 -0.1869 Bwd Packets/s -0.1262 Bwd Segment Size Avg
7 -0.2665 Flow IAT Min -0.0275 Subflow Bwd Bytes
8 0.1950 Flow Bytes/s -0.0723 Flow Packets/s
9 -0.2263 Average Packet Size -0.0743 Bwd Packet Length Mean
10 -0.4022 Packet Length Mean -0.1299 Idle Mean
11 -0.2983 Packet Length Max 0.1927 Fwd Header Length
12 -0.1267 Packet Length Std 0.0887 Flow IAT Max
13 -0.3179 Packet Length Variance 0.2001 Bwd Packets/s
14 0.4655 Bwd Segment Size Avg -0.1554 Flow Bytes/s
15 0.6879 Bwd Packet Length Mean -0.2383 Fwd Packets/s

the feature set selected via RFE, Idle Min has the lowest ranking along with a third-highest

weight of 0.1763. Meanwhile, Flow IAT Max is ranked at the top position by SelectKBest.

However, it has the third highest weight. This discrepancy suggests that the weights in a

neural network and the feature importance are different metrics in evaluating the

contributions of features to predictive performance.

34

1
 Based on Tables 8 and 9, the reward function corresponding to each action is represented

as R(s, at) = tanh(WT × at). Hence, the reward of a1 is calculated as R(s, a1) = tanh(WT ×

a1), where the weight set is transposed and multiplied with the features selected by action a1.

4.4 Threshold Probing

 Setting appropriate thresholds involves adjusting the level of sensitivity to Tor traffic.

Since the target thresholds are expected to be around 0, the probing process initiates at 0. The

Tor and non Tor thresholds were tested in the range of -1 to 1, and the incremental step is

0.05. Fig. 7 depicts the trends.

Fig. 7. True positive and true negative curve.

35

 Based on the variations of the true negative and true positive rates, the true positive and

true negative rates increase when increasing the Tor and non Tor thresholds from -1 to 0.

However, the true negative and true positive rates decrease as the thresholds keep increasing

after 0. To maximize the true positive and true negative rate, the Tor and non Tor

thresholds are finalized as -0.1 and -0.3 respectively.

4.5 Results of Model Testing

 The testing procedure of the unsupervised model is conducted in a supervised manner.

Specifically, every time a reward value is obtained, the reward value is compared with the

thresholds. The state to which the agent transits is compared with the known label for the

current sample. If the state and label match, the sample is correctly identified. Conversely, if

the state and label do not match, the samples are misclassified. In the event of entering the

ambiguous state, the agent continues to apply the subsequent actions until it receives a reward

value of either above the Tor threshold or below the non Tor threshold. If all four actions are

applied but the agent remains in the ambiguous state, the agent classifies the sample as

ambiguous. Depending on the administrative configurations, these samples can be flagged as

malicious and further analyzed by other IDS tools.

 Fig. 8 presents a breakdown of true positives, true negatives, false positives, and false

negatives. Based on the confusion matrix, 36,825 Tor samples are correctly identified, while

8,886 Tor samples are misclassified as non-Tor. As for non-Tor samples, 38,286 are correctly

classified, while 7,486 samples are misclassified as Tor samples, resulting in false positives.

Using the accuracy formula, or (true positive + true negative)/(true positive + true negative +

false positive + false negative), the accuracy rate is calculated as 82%. Additionally, the

36

Fig. 8. Confusion matrix of detection accuracy. (Note that Tor threshold=-0.1
and Non-Tor threshold=-0.3).

performance was evaluated using the metrics of recall and precision. The result is that the

precision is 0.83 and the recall is 0.81. Nonetheless, the cumulative count of samples is

91,483, which is equivalent to the size of the dataset, indicating that no sample is labeled

ambiguous by the detection model. This outcome demonstrates that the features selected by

all four actions can effectively make the model deduce the type of each traffic sample.

 Fig. 9 illuminates the reward value distribution with respect to the thresholds. The Tor

Threshold is set at -0.1, the non-Tor threshold is set at -0.3. The dashed black horizontal lines

denote the thresholds.

 Within Fig. 9, the figure labeled as Tor distribution represents instances where Tor

samples are correctly classified. Those correctly classified Tor samples have a reward value

surpassing the Tor threshold. Meanwhile, the figure labeled as Non-Tor distribution

showcases instances where non-Tor samples are correctly classified. Those correctly

classified non-Tor samples have a reward value below the non Tor threshold.

37

Fig. 9. Reward value distributions.

 It is observed that plenty of reward values of Tor samples clustered above the -0.1

threshold. Similarly, a significant number of non-Tor samples clustered below the -0.3

threshold. Especially, reward values of non-Tor samples distributed densely below the -0.3

threshold.

 The latency of the proposed system is measured. As a real-time traffic monitoring tool, the

system is expected to respond promptly and make decisions within tight time constraints. To

measure the latency, the time elapsed of processing 91,483 traffic flows is recorded. In this

measurement, the recorded time for processing 91,483 traffic flows ranged from 1 to 1.2

seconds. This indicates that the system operates within an acceptable time frame.

4.6 Model Comparisons

 The performance of the proposed system was compared with supervised baselines by

accuracy. The baselines are the CNN model (DeepImage) described in [10], the stacking

ensemble model developed by [12], the Random Forest Classifier in our experiment, the

improved decision tree algorithm (Tor-IDS) [18], and the random forest tested on the

Anon17 dataset [16]. Table 10 lists the comparison results.

38

Table 10
Comparison of Model Performance

Model Dataset Accuracy
Proposed Real-Time System CIC-Darknet2020 0.82

DeepImage [10] CIC-Darknet2020 0.95
Random Forest by Grid Search CIC-Darknet2020 0.97

Ensemble Model [12] CIC-Darknet2020 0.98
Tor-IDS [18] Self-Collected Network Traffic 0.99

Random Forest [16] Anon17 0.99

 The comparison results indicate that all supervised models have outstanding performance

in identifying Tor traffic patterns. Among those models, the improved decision tree algorithm

and the random forest implementation [16] have the highest accuracy at up to 0.99, followed

by the ensemble model at 0.98, the random forest classifier in our experiment at 0.97, and the

DeepImage model at 0.95. Notably, the proposed model lags behind the supervised models in

terms of accuracy, while it achieved an accuracy level exceeding 80%. The differences in

performance can be attributed to the high efficacy of supervised models in processing static

and historical data. In particular, ensemble models and random forest models have been

highly effective in classification tasks based on voting mechanisms. However, it is important

to underscore that the proposed model targets to operate in an unsupervised mode. This

strategy addresses the challenges posed by the lack of labeled data in real-time network

environments. As a trade-off, the proposed model is designed with the support of a single

dataset. Furthermore, it does not rely on archived labeled data for its operation. Additionally,

each of the single-layer neural networks used for emulating the reward functions has a simple

structure and fast training time. With continued improvements, the accuracy achieved is

considered satisfactory in this study. Ultimately, those aspects make deployments of this

system to real-time situations more practical and robust.

39

5 SUPPLEMENTAL DESIGNS

 This is a separate section that explains the issues encountered in the preliminary designs

of the detection model.

5.1 Reward Function and Threshold Setting

5.1.1 Linear Regression-Based Reward Function

 Due to limited information about the influence of chosen features on prediction accuracy,

the raw importance scores produced by the Random Forest Classifier were used as the

weights. Meanwhile, the importance scores are scaled such that they sum to 1. The reason is

to emphasize the impact of feature importance on prediction accuracy. Table 11 summarizes

the rank. The result is that Idle Max is ranked the most important and Idle Mean is ranked the

10th most important with a score of 0.03748. According to Table 11, the reward function is

represented as

r = (0.05232 × f1 + 050376 × f2 + ... + 0.03748 × f10)

where f1 is Idle Max and f10 is Idle Mean.

Table 11
Importance Ranking by Random Forest

Feature Feature Importance Score
1 Idle Max 0.05232
2 Bwd Packet Length Min 0.050376
3 Fwd Seg Size Min 0.04712
4 Flow IAT Min 0.0442712
5 Flow Bytes/s 0.040979
6 Fwd Header Length 0.040552
7 Flow IAT Mean 0.040008
8 Bwd Packets/s 0.039743
9 Flow IAT Max 0.038301
10 Idle Mean 0.03748

40

5.1.2 Weighted Mean-Based Threshold

 Built upon the linear reward function, the threshold was derived by averaging the rewards

of all samples. In the experiment, we consider samples with a reward of below average as

non-Tor and samples with a reward of above average as Tor. The result is that 66% of 91483

samples conform to this distribution. Since the importance scores vary slightly among trials

while keeping the hyperparameters fixed of the Random Forest Classifier, it is difficult to

enhance the performance by optimizing the weight values. As a result, a hyperbolic tangent

transformation is added to facilitate the classification task, as shown in Equation 3.

5.2 MDP Formalization

 In the initial detection model, the transition between states depends on the value of the

immediate reward. However, this environment model is different from a typical transition

probability, where the immediate reward is not expected to interfere with the transition

probability. To address this problem, we attempted to formalize the MDP by collecting

trajectories of the agent interacting with the environment. In each trajectory, the sequence of

the state, action, and reward at each time step was recorded in the form of τ = (s1, a1, r1, s2, a2,

r2, ..., sN). The cumulative reward along a trajectory, V, is the value of each trajectory, which

is written as

∞

V = ∑ γ−t ×rt
t=0

 By observing the values of si, ai, and ri, the agent aims to improve a policy by

maximizing V , or the cumulative reward. Nevertheless, considering there is no terminal state

in the network environment, the design focused on setting the thresholds properly and

implementing an unsupervised detection model based on reinforcement learning.

41

6 FUTURE WORK

 Due to constraints in developing a comprehensive detection model on a local machine and

the challenges of simulating Tor networks in a cloud environment, we were unable to extract

and analyze data on DNS delay time, bandwidth of Tor relays, and darknet server

specifications. Given the possible misuse of the Tor network and attacker behaviors, these

features are inferred to play a pivotal role in distinguishing between malicious and benign

anonymous traffic. As emphasized previously, differentiating malicious from benign

anonymous traffic is essential for thwarting penetrations and preserving privacy. Therefore, it

is worth continuing the experiment in this track. Beyond these features, the efficacy of the

proposed model can be tested on other public anonymous traffic datasets. The performance

will be compared across different datasets.

 What’s more, within the context of internetworking, the environment model along with

the dependencies among sequential flows remain unverified. In future work, we intend to

examine the environment model by controlling the generation of each traffic flow. The

insights will be further applied to adapt sequential decision-making frameworks to anonymous

traffic detection.

42

7 CONCLUSIONS

 Anonymous networks protect user’s identity by relaying data through a distributed

network. By using tools such as the Tor network, the transmitted data are hard to read and

trace. On the other hand, traffic from anonymous networks can be suspicious or malicious.

Therefore, detecting anonymous traffic in real-time is crucial yet inherently difficult. Some

supervised learning methods have been proposed and have demonstrated outstanding

performance on static data. However, some models exhibit the shortcomings of time-

consuming and low adaptability. Thus, an effective real-time detection system for anonymous

traffic contributes significantly to mitigating cyber threats.

 This work developed an unsupervised real-time system for detecting anonymous traffic

by using a labeled dataset containing 141,530 samples. Features that are most informative

about Tor and non-Tor traffic were extracted to define the tuple containing the information

about the state, action, and reward. Upon deployment, the system continuously monitors TCP

flows and observes relevant features. Instead of using training data, the system makes

decisions by reward signals from the environment and compares each reward value with the

predefined thresholds. Based on comparison results, the agent adjusts its actions and traverses

to either the Tor or Non-Tor state. In the testing phase, the model was gauged in a supervised

manner. The result indicates that the accuracy of the model for detecting anonymous traffic is

82%.

43

Literature Cited

[1] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second-generation onion
router,” Proc. 13th Conf. USENIX Secur. Symp., vol. 13, pp. 303-320, 2004.

[2] K. Peng, “How secure are the main real-world mix networks - case studies to explore
vulnerabilities and usability,” in Proc. 2023 ACM Asia Conf. Comput. Commun. Secur.,
2023, pp. 539–551.

[3] R. M. Parizi, S. Homayoun, A. Yazdinejad, A. Dehghantanha, and K. R. Choo,
“Integrating privacy enhancing techniques into blockchains using sidechains,” in 2019
IEEE Can. Conf. Electr. Comput. Eng., 2019, pp. 1–4.

[4] G. Draper-Gil, A. H. Lashkari, M. S. I. Mamun, and A. A. Ghorbani, “Characterization
of encrypted and vpn traffic using time-related features,” in 2nd Int. Conf. Inf. Syst.
Secur. Privacy, 2016, pp. 407–414.

[5] A. Taichi and G. Atsuhiro, “Graph visualization of the dark web hyperlink,” in 2020
8th Int. Symp. Comput. Netw., 2020, pp. 89–94.

[6] R. Biswas, E. Fidalgo, and E. Alegre, “Recognition of service domains on tor dark net
using perceptual hashing and image classification techniques,” in 8th Int. Conf. Imag.
Crime Detect. Prev., 2017, pp. 7–12.

[7] S. Kumar, H. Vranken, J. van Dijk, and T. Hamalainen, “Deep in the dark: A novel
threat detection system using darknet traffic,” in 2019 IEEE Int. Conf. Big Data, pp.
2019, 4273–4279.

[8] I. Ghafir, J. Svoboda, and V. Prenosil, “Tor-based malware and tor connection
detection,” in Int. Conf. Frontiers Commun., Netw. Appl., 2014, pp. 1–6.

[9] M. S. I. Mamun, M. A. Rathore, A. H. Lashkari, N. Stakhanova, and A. A. Ghorbani,
“Detecting malicious URLs using lexical analysis,” Netw. Syst. Secur., vol. 9955, pp.
467–482, 2016.

[10] A. H. Lashkari, G. Kaur, and A. Rahali, “Didarknet: A contemporary approach to
detect and characterize the darknet traffic using deep image learning,” in 10th Int. Conf.
Commun. Netw. Secur., 2020, pp. 1–13.

[11] A. H. Lashkari, G. D. Gil, M. S. I. Mamun, and A. A. Ghorbani, “Characterization of
Tor traffic using time based features,” in 3rd Int. Conf. Inf. Syst. Secur. Privacy, 2017,
pp. 253–262.

44

[12] H. Mohanty, A. H. Roudsari, and A. H. Lashkari, “Robust stacking ensemble model for
darknet traffic classification under adversarial settings,” Comput. Secur., vol. 120,
2022, Art. no. 102830.

[13] E. P. Xing. “Probabilistic graphical models.” cs.cmu.edu. Accessed: July 1, 2023.
[Online.] Available: http://www.cs.cmu.edu/∼epxing/Class/10708-20/

[14] K. Yu, K. Nguyen, and Y. Park, “Flexible and robust real-time intrusion detection
systems to network dynamics,” IEEE Access, vol. 10, pp. 98959–98969, 2022.

[15] K. Shahbar and A. N. Zincir-Heywood, “Anon 17: Network traffic dataset of
anonymity services,” Dalhousie University, 2017.

[16] M. Antonio, C. Domenico, A. Giuseppe, and P. Antonio, “Anonymity services tor, i2p,
jondonym: Classifying in the dark,” in 2017 29th Int. Teletraffic Congr., vol. 1, 2017,
pp. 81–89.

[17] “Tor project.” torproject.org. Accessed: Jan. 7, 2023. [Online.] Available:
https://www.torproject.org/about/history/

[18] J. Lingyu, L. Yang, W. Bailing, L. Hongri, and X. Guodong, “A hierarchical
classification approach for tor anonymous traffic,” in IEEE 9th Int. Conf. Commun.
Softw. Netw., 2017, pp. 239–243.

[19] R. Sutton and A. Barto, “Dynamic programming,” in Reinforcement Learning: An
Introduction. Cambridge, MA, USA: MIT Press, 2018, ch. 4, pp. 89-111.

[20] R. Sutton and A. Barto, “Temporal-difference learning,” in Reinforcement Learning: An
Introduction. Cambridge, MA, USA: MIT Press, 2018, ch. 6, pp. 143–165.

[21] V. Mnih et al., “Human-level control through deep reinforcement learning,” Nature,
vol. 518, pp. 529–533, 2015.

[22] V. Mnih et al., “Asynchronous methods for deep reinforcement learning,” in Proc. 33rd
Int. Conf. Mach. Learn., 2016, pp. 1928-1937.

[23] J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel, “Trust region policy
optimization,” in Proc. 31st Int. Conf. Mach. Learn., 2017, pp. 1889-1897.

[24] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy
optimization algorithms,” Arxiv., early access.
doi: https://doi.org/10.48550/arXiv.1707.06347.

[25] H. Jo and K. Kim, “Security service-aware reinforcement learning for efficient network
service provisioning,” in 2022 23rd Asia-Pacific Netw. Operations Manage. Symp.,
2022, pp. 1–4.

45

[26] G. Han, L. Xiao, and H. V. Poor, “Two-dimensional anti-jamming communication
based on deep reinforcement learning,” in IEEE Int. Conf. Acoust., Speech Signal
Process., 2017, pp. 2087–2091.

[27] G. Caminero, M. Lopez-Martin, and B. Carro, “Adversarial environment reinforcement
learning algorithm for intrusion detection,” Comput. Netw., vol. 159, pp. 96–109, 2019.

[28] N. C. Luong et al., “Applications of deep reinforcement learning in communications
and networking: A survey,” IEEE Commun. Surv. Tut., vol. 21, pp. 3133–3174, 2019.

[29] “scikit-learn: machine learning in Python.” scikit-learn.org. Accessed: Jan. 7, 2023.
[Online.] Available: https://scikit-learn.org/stable/

[30] C. Song, W. Fan, S.-Y. Chang, and Y. Park, “Reconstructing classification to enhance
machine-learning based network intrusion detection by embracing ambiguity,”
Commun. Comput. Inf. Sci., vol. 1383, pp. 169-187, 2021.

[31] S. Subbiah, K. S. M. Anbananthen, S. Thangaraj, S. Kannan, and D. Chelliah,
“Intrusion detection technique in wireless sensor network using grid search random
forest with Boruta feature selection algorithm,” Commun. Netw., vol. 24, pp. 264–273,
2022.

	Detecting the Onion Routing Traffic in Real-Time by using Reinforcement Learning
	Recommended Citation

	1.1 General Trends of Anonymous Network
	1.2 Motivations
	2.1 Overview of Tor and Darknet
	2.1.1 Tor Network
	2.1.2 The Darknet

	2.2 Detecting Tor traffic by Supervised Learning
	2.3 Reinforcement Learning
	2.3.1 Value-Based Learning
	2.3.2 Policy-based Learning
	2.3.3 Applications in the Network Environment

	3.1 Network Environment
	3.1.1 Information to be Extracted
	3.1.2 Environment Descriptions

	3.2 Proposed Detection Model
	3.3 Threshold Setting
	3.4 State Transitions
	3.4.1 Detection Model Illustrations
	3.4.2 Detection Algorithm

	4.1 Dataset Processing
	4.1.1 Cleaning and Preprocessing
	4.1.2 Label Encoding

	4.2 Feature Selection Experimentation
	4.2.1 Constructing the Action Space
	4.2.2 Hyper-Parameter Setting
	4.2.3 Feature Ranking Results

	4.3 Reward Function Experimentation
	4.3.1 Hyperbolic Tangent-Based Reward Function

	4.4 Threshold Probing
	4.5 Results of Model Testing
	4.6 Model Comparisons
	5.1 Reward Function and Threshold Setting
	5.1.1 Linear Regression-Based Reward Function
	5.1.2 Weighted Mean-Based Threshold

	5.2 MDP Formalization

