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ABSTRACT 

DETECTING THE ONION ROUTING TRAFFIC IN REAL-TIME BY USING 
REINFORCEMENT LEARNING 

by Dazhou Liu 

 Anonymous networks have been popularly utilized to protect user anonymity and 

facilitate network security for a decade. However, such networks have been a platform for 

adversarial affairs and various network attacks including suspicious traffic generators. As a 

result, detecting anonymous network traffic is one critical task to defend a network against 

unpredictable attacks. Many new methods using machine learning and deep learning 

techniques have been proposed. However, many of them rely heavily on a vast amount of 

labeled data and have complicated architectures. Since network traffic always fluctuates 

under different network environments, those techniques may degrade in performance due to 

the network dynamics in real time. 

 Aiming to mitigate reliance on labeled data and simplify the structures of machine 

learning models, this study introduces a lightweight system to detect real-time anonymous 

network traffic leveraging the principles of reinforcement learning. Initially, the historical 

traces of anonymous traffic are analyzed to identify the crucial attributes that characterize 

anonymous and regular network traffic. Building on these important attributes, we design 

three components within the reinforcement learning framework: states, actions, and rewards. 

More importantly, decision-making thresholds that reflect the system’s observations are set. 

Operating autonomously, the system employs these elements to discern network traffic 

categories in an unsupervised mode. Empirical results demonstrate that the system can 

identify patterns in anonymous traffic with an accuracy rate surpassing 80%. 
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1 INTRODUCTION 

1.1 General Trends of Anonymous Network 

 Anonymous networks play an important role in keeping a user’s identity secret. Through 

these networks, both users and servers can communicate without disclosing identity-related 

information. Existing anonymous networks include the Onion Routing [1], Mix Network [2], 

and the Garlic Routing [3], all of which are designed to decouple the identities of the source 

and destination entities. Furthermore, encryption techniques have been prevalent and served 

as the foundation of secure communications [4]. When coupled with these encryption 

techniques, anonymous networks have advanced the level of privacy. 

 The demands for exploiting anonymous networks and visiting hidden network spaces 

surged. Approximately two million users accessed Tor and half a million users accessed 

hidden services via bridge, in the first quarter of 2020 [1]. Akoki et al. collected more than 

2.3 million dark web pages and figured out that the dark web has become larger and more 

complex since June 2018 [5]. Investigations into the Tor network revealed that a broad range 

of illegal services and items, such as file sharing, ransomware panels, or counterfeits, have 

been circulating [6]. By abusing anonymous networks, the Tor network has been a practical 

tool for attackers to engage in criminal activities, such as malicious code distributions. All 

darknet-related traffic is assumed to be suspicious or malicious, due to the passive 

configuration of darknet [7]. Based on this assumption, the authors proposed to detect threats, 

such as Distributed Denial of Services (DDoS), by evaluating darknet traffic. These trends 

imply that anonymous traffic can be a sign of attacks. 
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 To prevent penetrations, some systems are configured to block all anonymous traffic. 

Nonetheless, this action is detrimental to legitimate users who are privacy-conscious. 

Another countermeasure is to develop a blacklist of the IP addresses belonging to servers 

related to anonymous traffic [8]. When encountering suspicious traffic, the IP address of the 

incoming traffic is compared against each blacklisted IP address. However, this approach 

performs poorly when the blacklist is outdated. Furthermore, the extraction of blacklists by 

filtering technologies is expensive [9]. To improve the efficiency of detecting anonymous 

traffic, researchers inspect anonymous traffic based on statistics about packet headers and 

stream patterns [4]. 

 Recently, machine learning and deep learning-based methods have been practical tools for 

analyzing anonymous traffic. Extensive studies have been on supervised learning [4], [10]–

[12]. In supervised learning approaches, the objective is to learn the approximation of P(y|x), 

given datasets in the form of [xi, yi]n, where xi is the feature set and yi is the label set [13]. 

Within supervised learning algorithms, classifiers have been heavily employed to compute 

boundaries that divide samples into separate regions. In the Deep Learning field, classifiers 

are built with complicated structures and can process features in high dimensions. For 

instance, Convolutional Neural Networks are efficient in compressing and extracting 

information from two-dimensional feature spaces. Recurrent Neural Networks can learn 

features from sequential data and capture temporal characteristics. 

 Although classifiers are predominantly used, shortcomings exist when those models are 

deployed in real-time. For instance, in the realm of IDS, certain deep learning models show 

vulnerability to obfuscated features of network traffic and struggle to adapt to dynamic 
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network patterns [14]. In terms of performance evaluation, some ML and Deep Learning-

based models display a high False Positive Rate and lower F1-score in darknet traffic 

classification [12]. What’s more, due to the limited availability of public datasets, researchers 

have difficulty accessing data about anonymous network traffic [15], [16]. 

 Consequently, training detection models can be challenging. In light of these limitations, 

this paper proposes a reinforcement learning-based system for the detection of anonymous 

Tor traffic. By adopting an MDP framework, we defined the states, actions, and rewards to 

form a tuple. Based on the tuple, the proposed model takes actions, obtains reward values, 

and transits between states. Additionally, we analyze the distributions of the reward values 

and determine a threshold value for anonymous traffic and one for regular traffic. By 

comparing the reward value with the predetermined threshold, the agent decides whether the 

traffic is anonymous, regular, or ambiguous in real time. 

1.2 Motivations 

1. Many Tor traffic analysis methods rely on supervised learning. While these 

supervised models are highly efficient in classifying network traffic, their efficacy 

can be constrained by the scarcity of training data. In response, this study introduces a 

real-time unsupervised detection tool. The objective is to design an unsupervised 

detection tool with a small amount of data and yet exhibit an enhanced performance 

in circumstances with limited training data and labels. 

2. The labeled darknet dataset, or CIC-Darknet-2020, provides historical traces related 

to anonymous and regular traffic [10]. Those traces were generated by online 

activities, including streaming, chatting, and browsing on platforms like Facebook 
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and Skype [4]. Rather than building intricate supervised models, we focus on 

analyzing and extracting the most relevant features of anonymous traffic. 

3. Although network flows exhibit unpredictability, temporal dynamics can be observed 

between sequences of packets. Reinforcement learning methods have been effective 

in addressing sequential decision-making problems. To this end, a system adopting a 

deterministic MDP framework is developed for real-time monitoring and detection of 

anonymous traffic. This system is expected to interact with the network environment 

without the need for labeled training data. 

 The paper’s structure and content are outlined as follows. The related work section 

discusses the technical details of onion routing, introduces supervised learning-based 

detection methods for anonymous traffic, and explains applications of reinforcement learning 

frameworks to the network domains. Next, the methodology section describes the proposed 

reinforcement learning-based system. The experimentation and evaluations conducted are 

explained in the experiment section. Finally, the future work and conclusions summarize 

future scopes and the proposed system. 
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2 RELATED WORK 

2.1 Overview of Tor and Darknet 

2.1.1 Tor Network 

 The intention of the Tor network is to preserve anonymity. In turn, Onion Routing is 

designed as a distributed overlay network, aiming to anonymize TCP-related activities such 

as web browsing and messages sending [1]. Further, the Tor network consists of relays that 

are run by volunteers spanning the globe [17]. Each relay operates as a router that facilitates 

the reception of incoming traffic and the routing of outbound traffic to the intended 

destination. 

 To achieve anonymity, data are routed through a chain of no less than three relays, and 

each relay in a chain is only aware of its immediate predecessor and successor [1]. This 

design ensures that no intermediary can deduce the identity of the destination entity from the 

source entity, and vice versa. 

 To ensure the confidentiality of routed data, the Tor network enforces multi-layer 

cryptography. The layered cryptography resembles the structure of an onion. When a client, 

such as the Tor browser, transmits data through the Tor network, the local proxy encrypts the 

data layer by layer. When a relay in the Tor network receives data, it decrypts one of the 

layers. 

 As a result of the routing and encrypting mechanism, data routed through the Tor 

network attains a high level of anonymity and privacy. 
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2.1.2 The Darknet 

 In addition to communicating with entities like YouTube, the Tor network hosts servers 

that maintain web pages and offer services to Internet users. Those websites are known as 

Onion Services. The network of servers that support Onion Services can be considered as the 

darknet. As the darknet is restricted to be accessed through infrastructures like the Tor 

network, the Tor browser has become a prevalent tool for accessing the darknet. 

Differentiating Tor and darknet traffic is crucial for cybersecurity. By examining the open 

source codes of the Tor browser [17], four differences between darknet and Tor were 

identified. These characteristics include the locations of destination servers, the number of 

relays in a circuit, IP address, and DNS resolution. 

 For the locations of destination servers, the Tor network directs user data to servers 

outside the Tor network (e.g., YouTube) and within the Tor network (Darknet). The feature of 

circuit length describes the path to a public server or a darknet server. Specifically, the path to 

a public server consists of three Tor relays while the path to a darknet server contains six Tor 

relays. As for the IP address, the darknet servers conceal their IP address from the clients. As 

for DNS resolution, visiting servers outside the Tor network requires that the clients handle 

DNS resolution through the local proxy, or the exit relay resolves DNS on behalf of the 

client. However, communicating with darknet servers does not involve DNS resolution. 

Table 1 summarizes the four features. 

Table 1 
Summary of Differences between the Internet and Darknet 

Server Location Circuit Length Server IP Address DNS Resolution 
Surface Webs 

Darknet 
3 nodes 
6 nodes 

Disclosed to clients 
Hidden to clients 

By clients or exit nodes 
No Resolution 
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 In summary, the Tor network has been built to refrain from traffic analysis. When the 

attackers abuse the Tor network, the security of information system resources is at risk. By 

examining the open source codes of the Tor browser, four features that characterize the 

darknet are unveiled. The relevant statistics provide more insights into detecting darknet 

traffic. 

2.2 Detecting Tor traffic by Supervised Learning 

 As discussed in Section 2.1, reading or tracing anonymous Tor traffic is highly 

complicated. This aspect poses challenges to identifying Tor traffic from mixed network 

traffic. To address this issue, researchers extracted flow-level features and developed 

supervised learning-based approaches. 

 Lashkari et al. generated eight types of network traffic (e.g., browsing, chat, streaming) 

and captured Tor traffic between the client and entry node [11]. In their approach, eight 

categories of timing-related statistics were extracted. Those features include the amount of 

time between the arrival of two packets, the amount of time during which a flow remains 

active or idle, flow duration, and the number of bytes or packets in one second. Leveraging 

these features, Zero Rule, C4.5 Decision Tree, and K Nearest Neighbor were applied to 

classify network traffic into either Tor or normal class. Based on analysis, the C4.5 Decision 

Tree can detect 93.4% of Tor samples. Their findings indicate that timing-based features can 

be used to unveil Tor traffic patterns, even without accessing the packet contents. 

 Lashkari et al. merged the VPN-nonVPN dataset [4] and the Tor-nonTor dataset [11] to 

create a comprehensive darknet dataset [10]. Based on the dataset, they proposed a deep 

learning model in the form of a two-dimensional CNN. In the feature engineering process, 61 
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features were extracted based on descending feature importance scores generated by random 

forest. Subsequently, these features were harnessed to construct grayscale images with 64 

pixels. Each pixel corresponds to one of the 61 feature values. By using convolution 

techniques, the deep learning model can classify Tor and non-Tor traffic with 95% test 

accuracy. 

 Mohanty et al. combined multiple classifiers by bootstrap aggregating to form an 

ensemble model [12]. In specific, the ensemble model comprises a base learner and a meta-

learner. The first phase base learner is formed by the K Nearest Neighbor, Random Forest, 

and Decision Tree models. The succeeding meta-learner makes predictions by Logistic 

Regression. Evaluated on binary classification tasks, the stacking model is declared to 

achieve 98.89% accuracy. 

 To address the reliance of many classifiers on extensive labeled training data, an 

enhanced decision tree algorithm was introduced [18]. The authors identified four specific 

features that serve as the unique characteristics of Tor traffic. These four features are entropy 

related to packet length, frequency of appearance of packets with a length of 600 bytes, the 

number of packets with zero data in the first 10 packets, and the average time between the 

arrival of two packets. For the supervised model, a decision tree was constructed. Instead of 

adopting the splitting attributes in traditional C4.5 and ID3 decision trees, information gain is 

employed to select the most informative attributes. 

 Specifically, attributes with the highest information gain are chosen as the splitting 

attributes. During the testing phase, the authors collected network traffic and gathered 50,000 
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samples. Utilizing the four proposed features, the results indicate that the modified decision 

tree achieved an accuracy of up to 99% for detecting Tor traffic. 

 Due to privacy concerns and the limited availability of the dataset on anonymous traffic, 

researchers often gather private data or generate traffic within simulated environments [15]. 

In response to this challenge, the Anon17 dataset was introduced, logging features associated 

with Tor and other anonymous network traffic instances [15]. These features encompass 

packet header information, packet counts, and length in bytes of each flow. Leveraging the 

Anon17 dataset, the researchers probed the extent to which anonymous traffic can be 

identified by ML techniques [16]. The classification algorithms include Naive Bayes, 

Bayesian Networks, C4.5, and random forest. The results discern that classifiers can classify 

Tor and other types of network traffic instances with an accuracy closing to 100%. 

 In summary, the majority of supervised models designed for detecting anonymous Tor 

traffic rely on classification tasks. The efficacy of these models depends on the quality of data 

preprocessing, feature engineering, and the training process. When those models are trained 

with sufficient data and crafted features, they can detect anonymous traffic with an accuracy of 

over 90%. Conversely, the performance of supervised models may degrade due to inadequate 

data and non-relevant features. This aspect prompts the exploration of alternative decision-

making paradigms. 

2.3 Reinforcement Learning 

 Reinforcement learning involves the domain of sequential decision-making. In sequential 

decision-making problems, the goal includes learning what actions to execute at a state such 

that the expected returns are maximized. The mapping of a state to an action is referred to as 
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a “policy”. Unlike instructive approaches, reinforcement learning-based methods involve 

assessment of their behaviors. The evaluations of policies are quantified in terms of a value or 

the probability of taking an action at a state. Based on the evaluation strategy, reinforcement 

learning-based methods can be divided into two categories: value-based and policy-based 

learning. 

2.3.1 Value-Based Learning 

 Upon following a policy, the quality of the policy is evaluated by a value metric. The 

value metric represents the expected cumulative return of a state or a state-action pair. In 

value-based learning, the value of a state or a state-action pair is encapsulated as a value 

function and iteratively updated. In policy iteration, the value of a state can be estimated by 

the Bellman equation [19] 

v(s) = ∑π(a|s) ∑ p(s′, r|s, a)[r + γv(s′ )]                              (1) 
a s′ 

,r 

 In Equation 1, each available action in a state is evaluated by summing the probability of 

transitioning to each subsequent state, multiplied by the immediate reward plus the 

discounted reward of the next state. The term ∑s′,r p(s′, r|s, a)[r + γv(s′ )] implies that the 

expected cumulative return sums the values of all potential subsequent states upon executing 

an action. Additionally, the estimation requires knowledge about the transition probability to 

the next state, denoted as p(s′, r|s, a). 

 When the dynamic is not fully understood, model-free learning is an approach to solving 

MDP problems. Q-learning and State-Action-Reward-State-Action (SARSA) utilize Q-

values to learn optimal policies that lead to the highest expected returns. Q learning methods 
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leverage off-policy temporal difference (TD) error for learning. The temporal difference 

formula for updating a Q value is as follows [20]: 

Q(S, A) ← Q(S, A) + α[R + γmaxaQ(S , a) −Q(S, A)]                  (2) 

The Q value of the action taken at the current state is updated by the TD error of 

R + γmaxaQ(S′, a) −Q(S, A). 

Equations 1 and 2 are practical in scenarios where the state-action space is finite and discrete. 

To solve problems involving continuous state-action spaces, researchers studied substituting 

tables with neural networks. The reliance on crafted features and constraints posed by low 

dimensional state space was indicated by [21]. The authors subsequently introduced Deep Q 

Network to learn policies for controlling Atari 2600 games. Within their model, Q-values are 

parameterized as Q(s, a; θi), where θi is the weight set of a convolutional neural network. 

The temporal difference formula was harnessed to update the parameters of the neural 

network. To alleviate data correlations and stabilize the learning process, the authors 

implemented experience replay and target network. When evaluating the Deep Q Network 

using Atari games, their framework outperforms human players and baselines in 29 games in 

terms of game scores. 

2.3.2 Policy-based Learning 

 There are situations in which the estimation of values is intractable. One solution is to 

parameterize and optimize the policies directly. Such policy optimization approaches include 

policy gradient [22] and Trust Region Methods [23]. In policy gradient, the parameterized 

policy takes a state vector as the input and outputs the probability distribution of actions. 

Next, the gradient of the policy is calculated and the policy is updated by gradient ascent. 
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Trust region policy optimization (TRPO) stabilizes the policy updates by constraining the 

magnitude of each update [24]. To make further improvements based on vanilla policy 

gradient, Q learning, and TRPO, Proximal Policy Optimization (PPO) was proposed [24]. In 

PPO, the data efficiency and reliability of TRPO are further enhanced by clipping the 

surrogate objective. At the one-million step benchmark in continuous control tasks, the 

results exhibit that PPO outperforms other implementations with the highest episode rewards. 

In actor-critic architecture, the actor neural network acts as the policy function and the critic 

neural network behaves as a value function that estimates the actor. 

2.3.3 Applications in the Network Environment 

 Reinforcement learning frameworks have a wide range of applications for optimizing 

network topologies and developing counter-attack strategies. 

 A reinforcement learning-based approach is developed to make optimal routing decisions 

while satisfying security requirements [25]. In the proposed method, each state is represented 

as a switch on the data plane of the Software Defined Network. In addition, security devices 

are deployed on some of the switches. The goal of the agent is to traverse from the source 

switch to the destination switch while avoiding paths that have high latency, jitter, and packet 

drop rates. The proposed method utilizes a Q table and defines the reward function as the 

weighted sum of delay, jitter, traffic rate, and packet loss. 

 Compared to existing link stability-based Q-routing, the results state that the delay time is 

reduced, regardless of the number of security constraints. A Deep Q Learning technique is 

applied to counter jamming attacks in cognitive radio networks (CRN) [26]. In a CRN system, 

the participants include primary users (PU), secondary users (SU), and jammers. In the 
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proposed method, each state is represented as the appearance of PUs and signal-to-

interference-plus-noise ratio (SINR). The agent is an SU and its action is choosing to either 

leave the jamming area or defeat the jammer. 

 Addressing the limitations of Q learning to large state space, a deep convolutional neural 

network is leveraged to approximate the Q values. The result shows that the proposed 

method has a faster convergence time and achieved higher SINR, compared with the naive Q 

learning-based method. 

 A Q learning paradigm is combined with a classifier to develop an IDS [27]. In addition 

to the classifier agent, the environment serves as the second agent. The state of the classifier 

agent is interpreted by samples in the NSL-KDD dataset, and the action of the classifier agent 

is to predict labels. Simultaneously, the action of the environment is to select a state for the 

classifier, such that the prediction accuracy of the classifier agent is reduced. In this 

adversarial mode, the proposed method has the highest accuracy and lowest prediction time 

among other supervised baselines. Whereas, the performance of the proposed method is lower 

than that of other reinforcement learning algorithms like the Asynchronous Advantage Actor 

Critic (A3C). 

 According to the applications of reinforcement learning, we define the actions, states, and 

rewards, such that these definitions fit the characteristics of a finite and discrete state-action 

space. Based on these definitions, this study develops a value-based approach to detect Tor 

traffic. 
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3 METHODOLOGY 

 This section explains the network environment in which the proposed detection system is 

to be deployed and the adapted MDP framework to detect anonymous traffic. 

3.1 Network Environment 

3.1.1 Information to be Extracted 

 In a network environment, anonymous traffic is expected to be present at any time. 

Meanwhile, real-time detection of anonymous network traffic necessitates a comprehensive 

understanding of traffic patterns. Rather than conducting deep packet inspections on 

individual packets, the system extracts pattern information from a sequence of packets. Each 

sequence of packets, akin to a flow, is transmitted between the same source and destination 

IP addresses, on the same source and destination port [4]. A flow is transmitted in the forward 

direction (FWD) if the source sends packets to the destination [4]. Otherwise, the direction 

is backward (BWD). 

 Within this framework, the flow-level information includes features such as flow length 

in bytes, packet counts, duration of a flow, and the time elapsed between the arrival of 

consecutive packets in the FWD or BWD. For instance, the average length of each packet 

within a flow can be calculated by dividing the total number of bytes by the total number of 

packets. Given that no training data is available in real-time, the system computes those 

statistics upon capturing a flow. 

3.1.2 Environment Descriptions 

 The environment is a dynamic network space constantly receiving traffic. Due to 

constraints in dimensionality, Fig. 1 visualizes the environment in two dimensions and 



 

15 
 

displays statistics related to the number of packets. In Fig. 1, each data point corresponds to a 

captured flow. The x-axis and y-axis denote the elapsed time since the system’s initiation and 

the number of packets in a flow. For instance, at time 0 the system captured a flow comprising 

23 thousand packets in the FWD direction. At the 80 milliseconds (ms) mark, the system 

captured a flow containing 110 thousand packets in the BWD direction. 

 
Fig. 1. The network environment with mixed 
anonymous and regular network traffic. 

 Upon initiation, the monitoring procedure is as follows. In the beginning stage, the 

system keeps listening on a port and awaits the arrival of network flows. When a flow is 

captured, which could occur at 39ms, the system is unable to discern whether this flow is 

anonymous. Next, the agent extracts information from each flow’s predefined feature sets. For 

instance, it quantifies the packet counts and flow length in bytes, as described in subsection 

3.1.1. After obtaining those flow statistics, the environment dispatches a reward signal to the 

agent. According to the reward value, the system decides whether the captured flow is 
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ambiguous. After each decision, the agent concludes its evaluation of the current flow and 

awaits the analysis of the next arriving flow, which could occur at 40ms. As the proposed 

system aims to operate in real-time, it is expected to decide the flow status with shorter than 

the time elapsed between consecutive flows. 

3.2 Proposed Detection Model 

 MDP is a standard framework for addressing problems related to sequential decision-

making [28]. A quadruple (S, A, r, p) can be used to design an MDP environment, where S is 

a finite set of states, A is a finite set of actions, p is a transition probability, and r corresponds 

to the immediate reward received after executing an action [28]. 

 Aligning with the tuple, the detection model is designed to emulate the MDP model, as 

depicted in Fig. 2. In Fig. 2, the process involves selecting a set of features (e.g. the average 

length of packets in a flow and idle time) by the system, according to the current policy. 

Next, following the execution of action At, the environment sends the reward to the agent, 

leading to a transition to another state. This design addresses the adaption of the MDP 

paradigm to the network environment and the interplay between the agent and the 

environment. 

 
 

Fig. 2. Scheme description. 
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 Based on the CIC-Dakrnet2020 dataset [10], the list below summarizes each element in 

the quadruple. 

1. State S: The state space contains three states: Tor, non-Tor, and ambiguous. The state 

space is interpreted as S = {s1, s2, s3}. In S, s1 represents an ambiguous state, s2 

represents a Tor state, and s3 represents a non-Tor state. The initial state of the agent 

is ambiguous, meaning that the agent has no clue about the behavior of the detected 

traffic. As such, the goal of the agent is to identify an answer so as to leave the 

ambiguous state. Accordingly, both the Tor and non-Tor states are considered as the 

goal states. When reaching the Tor state, the agent assumes that the current traffic is 

generated by the Tor network. When transiting to the non-Tor state, the current traffic 

flow is recognized as non-Tor. In this design, the conventional labels used for 

classification tasks are replaced with these model states, allowing the system to 

process the observed network traffic differently. 

2. Action A: Rather than assigning labels, the action of the agent is to select features. 

The action space is defined as A = {a1, a2, a3, ..., an}, where ai ∈ A and ai = { f1, f 2, 

f3, ..., ft}. The subscript n represents the number of actions, and t is the number of 

features selected by each action. To reduce the complexity and address the feature 

importance, the feature selection techniques provided by the scikit-learn library [29] 

are used to select features. To utilize the non-linear attribute of random forest and 

reduce overfitting, those selection techniques are chosen as Recursive Feature 

Elimination (RFE), Recursive Feature Elimination with Cross Validation (RFE), 

Random Forest Classifier, and SelectKBest. Table 2 summarizes the action space. 
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Based on this design, the action space size is four. The first, second, third, and fourth 

action is selecting features ranked by RFE, RFECV, Random Forest Classifier, and 

SelectKBest, respectively. The number of features along with the selected features by 

each action will be discussed in the experiment section. 

Table 2 
Action Space 

Number Action 
1 Select features ranked by RFE 
2 Select features ranked by RFECV 
3 Select features ranked by Random Forest Classifier 
4 Select features ranked by SelectKBest 

 

3. Heuristic Reward Function: As an indicator of the consequences of the agent’s 

action, the reward function is designed heuristically. The immediate reward is 

calculated using a specific formula that involves weighted feature values and a 

hyperbolic tangent function. More specifically, it is calculated as taking the linear 

sum of weighted feature values as input to the hyperbolic tangent function. This 

design of the reward function bounds the values of the reward within the range of -1 

and 1. Besides, it can potentially separate Tor and non-Tor samples according to the 

thresholds around 0. The reward function formula is as follows: 

r(s, a) = tanh(w1 × f1 + w2 × f2 + w3 × f3 + ... + wt × ft)                    (3) 

The Hyperbolic Tangent function, tanh(x), is in the form of: 

                                                           (4) 
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where e is the natural exponent and x is the linear sum of the weighted feature 

values, as shown in Formula 3. 

4. Environment Model: In some MDP problems, the model of the environment is the 

transition probability, or P(s next|s, a). Specifically, the model is the conditional 

probability of transiting to the next state, given an action a at the current state. 

Depending on knowledge about the environment model, the interactions with the 

environment can be model-based or model-free. In scenarios such as balancing a 

pendulum or humanoid, the environment model can be approximated by principles 

such as kinematics. However, an explicit dynamic among the recorded network flows 

in CIC-Darknet2020 has not been identified. Thus, the agent is expected to make 

decisions and interact with the environment without being aware of the environment 

model. 

3.3 Threshold Setting 

 The introduction of thresholds is a strategy aimed at reducing the reliance on labeled 

data, which helps the detection system make a decision. Two thresholds are established: one 

for non-Tor traffic and one for Tor traffic. Segmented by the Tor and Non-Tor thresholds, 

three intervals are formed: the interval left and right of the non Tor and Tor thresholds along 

with the region between the non-Tor and Tor thresholds. Fig. 3 describes the three intervals 

formed by the two thresholds. 

 
Fig. 3. Threshold interval. 
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 When the agent chooses an action in response to an observed network flow, the 

environment assigns the immediate reward and compares it with the predefined thresholds. If 

the reward value is lower than the non-Tor threshold (left of the non-Tor threshold), the agent 

classifies the current traffic as non-Tor traffic with certainty. If the reward value is higher 

than the Tor threshold (right of the Tor threshold), the agent confidently classifies the current 

traffic as Tor traffic. In the third scenario, the reward value falls between the two thresholds 

and the agent cannot make a decision. This scenario indicates ambiguity regarding the type 

of current traffic. It is worth noting that ambiguous data prompt the need for further 

processing. Song et al. state that ambiguous samples impact accuracy negatively and are non-

trivial when the number of data points is huge [30]. 

 By setting the thresholds, Tor and non-Tor flows can be distinguished in an unsupervised 

mode, and the labels are substituted with threshold values. 

3.4 State Transitions 

3.4.1 Detection Model Illustrations 

 Fig. 4 depicts the three states and four actions of the detection model. The nodes labeled 

Ambiguous, Tor, and non-Tor represent the three states. The edges illustrate the transitions 

between states after applying an action. In Fig. 4, a1 corresponds to the first action in the 

action space, which is selecting features ranked by RFE, as shown in Table 2. The actions a2, 

a3, and a4 represent the second, third, and fourth actions in the action space. Upon each 

action, the reward, r, is calculated according to Equation 3. Based on this three-state graph, 

the agent can reach the other two states from arbitrary starting states, covering all three 

transition possibilities. 
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Fig. 4. Summary of model transitions (T1: move 
to Tor state (r ≥ Tor threshold), T2: move to non-
Tor state (r ≤ non Tor threshold), T3: move to 
ambiguous state (non Tor threshold < r < Tor 
threshold)). 

 At the Tor or non-Tor state, the agent has a single option of applying a1. As depicted in 

Fig. 4, taking action a1 results in moving to the other two states or staying in the same state. 

For instance, in the non-Tor state, there are three transition possibilities. First, the agent stays 

in the non-Tor state if the reward value received is lower than the non Tor threshold. In the 

second scenario, the agent moves to the Tor state from the non-Tor state when it receives a 

reward value higher than the Tor threshold, as mentioned in Fig. 3. In the third scenario, the 

agent moves to the ambiguous state if the reward value is less than the Tor threshold and 

higher than the non Tor threshold. 

 In particular, Fig. 5 illustrates the agent’s behavior in the ambiguous state. The 

ambiguous state indicates that action a1 is not informative to make a decision. Once 

transiting to the ambiguous state from the Tor or non-Tor state, the agent applies a2, a3, and  
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Fig. 5. Transitions at the ambiguous state. 

a4 sequentially until one of these actions leads the agent to transit back to either the Tor or 

non-Tor state. However, if the agent ends up in the ambiguous state after applying the action 

a4, the current flow is labeled as anonymous and malicious. 

 Overall, an action that results in the agent transiting to the Tor or non-Tor state or staying 

in the ambiguous state after applying a4 concludes the current flow. 

3.4.2 Detection Algorithm 

 Algorithm 1 below describes the transitions between states according to actions and 

rewards. At either the Tor or Non-Tor state, the agent labels the current flow and moves to the 

next flow. On the other hand, if the agent ends up reaching the ambiguous state, it selects the 

other three actions in the action space. Once an action results in a reward value greater than 

the Tor threshold or less than the non-Tor threshold, the agent concludes the current flow and 

moves to the next flow. If the agent remains in the ambiguous state even after applying four 

actions, the traffic statistic is stored in a buffer, and the agent skips to the next flow. Elements 

in the buffer require further analysis depending on the policies of the corresponding IDS. 
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 In the implementation phase, the flows are processed in batches to reduce the time 

overhead. 

Algorithm 1 Transitions Between States 
1: 
2: 
 
3: 
 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 

procedure TRANSITION(threshold Tor, threshold nonTor, f eature set, batch size)        ▷ Function 
for i in range(0, len(feature set), batch size) do 
// Create batches 

batch  f eatures = f eature set[i : i + batch size] 
// Calculate reward value of each sample in the batch 

r batch = f irst action(batch  f eatures) 
for j in range(len(batch features), batch size) do 

if r[ j] >= threshold tor then                                                                       ▷ Classified as Tor 
State ← Tor 

else if r[ j] <= threshold non tor then                                            ▷ Classified as non Tor 
State ← Non Tor 

else                                                                                                      ▷ Classified as Ambiguous 
r batch = next action(batch  f eatures) 
while r[ j] > threshold non tor and r[ j] < threshold tor do 

if no actions remaining in action space then 
Label (Anonymous && Malicious)                                 ▷ Further Processing 

break 
State ← Ambiguous 
Select next action 
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4 EXPERIMENTS AND EVALUATIONS 

 This section delineates the implementation and testing of the proposed framework. At 

first, the dataset was cleaned and preprocessed. Second, the feature sets to be used for 

constructing the action space were selected. Third, each reward function corresponding to the 

respective action is defined. Lastly, the performance of the framework is gauged based on 

accuracy. 

4.1 Dataset Processing 

 The CIC-Darknet2020 dataset is an archived dataset with labels. It summarizes the 

features of bidirectional traffic flows generated by the CICFlowMeter [10]. As this dataset is 

readily available, our model was developed and tested based on those historical flows. As the 

Tor browser is commonly used and anonymous traffic is often encrypted, we encompass Tor 

and VPN traffic samples within the realm of anonymous traffic. 

 The features can be divided into two categories: time-based features and packet-based 

features. Time-based features include packet inter-arrival time, idle time, and byte per 

second. Packet-based features encompass statistics about packet size and counts of flags per 

flow. 

 There are four types of labels: non-Tor, non-VPN, Tor, and VPN. Concerning that Tor 

traffic is encrypted, samples labeled as VPN are considered Tor samples. On one hand, 

anonymous Tor traffic is regarded as an anomaly. On the other hand, the non-Tor and non-

VPN labels are merged into the non-Tor type. After this amalgamation, two types of labels 

remain in the dataset, which are non-Tor and Tor. Table 3 summarizes the raw dataset. 
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Table 3 
Raw Dataset 

Total Samples Total Features Non-Tor Samples Tor Samples 
141530 83 117219 24311 

 

 To elaborate, the number of recorded flows is 141,530. The number of features is 83. The 

number of flows labeled as non-Tor and Tor is 117,219 and 24,311, respectively. 

4.1.1 Cleaning and Preprocessing 

 The raw dataset was imported and converted to a pandas dataframe. Next, the data was 

cleaned. In the cleaning phase, rows that contain invalid values, such as infinity and “Not a 

Number” are dropped. Then the columns whose entries are all equal to the same value were 

discarded. As a result, the number of features is reduced from 83 to 62 and the number of 

samples is decreased from 141,530 to 141,483. To further simplify the feature set, the 

Feature Selection with Variance Thresholding (VarianceThreshold) technique in Scikit-Learn 

library (abbreviated as sklearn) [29] is applied. The VarianceThreshold technique removes 

features with a variance below a specified threshold. In the experiment, the threshold is set to 

30%. After running VarianceThreshold, four features were discarded, resulting in 58 

features. 

 The raw dataset is skewed. As shown in Table 3, Non-Tor samples are abundant. On the 

other hand, the number of Tor samples is 24,311 and only accounts for 17.18% of the 

141,483 labels. To mitigate the bias, the samples indexed at 0-69999 were eliminated. Next, 

we generated synthetic data by duplicating 20,000 samples labeled as either Tor or VPN.  
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After processing, the finalized dataset contains 91,483 samples and 58 features. As Table 4 

displays, the final dataset contains 47,172 Tor samples, accounting for 48.4% of the 91,483 

samples. The number of features is 58. 

Table 4 
Final Dataset 

Total Samples Total Features Non-Tor Samples Tor Samples 
91483 58 47172 44311 

 

 Lastly, the order of samples is shuffled to reduce overfitting and bias. 

4.1.2 Label Encoding 

 Since each label is categorical and stores a string, each label is replaced by an integer of 0 

or 1 to follow the Bernoulli Equation. Bernoulli Equation is defined as P(X = 0) = 1 − p and 

P(X = 1) = p, where X is a random variable and p is the probability of X being equal to 1. 

Since anonymous traffic is defined as an anomaly, Tor labels are replaced with integer 1 

(Positive Class). The labels of non-Tor are replaced with 0 (Negative Class). This step is 

achieved through the Label Encoding method of sklearn. 

 To apply the hyperbolic tangent function to the classification model, the labels belonging 

to the Positive Class are converted to 1 while the labels of the Negative Class are converted 

to -1. The formula is as follows: label encoding = 2 ×label encoding− 1. 

4.2 Feature Selection Experimentation 

4.2.1 Constructing the Action Space 

 The process of finalizing the action space involves determining the number of features 

selected by each action and the number of actions in the action space. 
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 In terms of the number of features selected by each action, this study chose to set this 

number within the range of 10 to 15 features. This choice was based on prior experience and 

information from earlier research on the classification of Tor traffic. An alternative 

perspective is to provide each classifier with as much information as possible, implying that 

all 58 features in the dataset would be used. Nevertheless, this setting increases the data 

volume that needs to be processed. 

 To determine the appropriate number of features to be selected by each action, the study 

employs the accuracy metric to evaluate the performance of the Random Forest Classifier. 

The evaluation was conducted while increasing the number of features in step of 15. 

Additionally, these features were included following the importance score generated by the 

Random Forest model after fitting. Fig. 6 delineates the accuracy curve. Initially, the 

accuracy increased from 0.9746 by using 15 features to 0.9774 by using 30 features. 

Nonetheless, the accuracy ceases to increase when more than 30 features are used. This 

observation indicates that increasing the number of features within a certain range contributes 

to improving the accuracy. However, an exceeding number of features do not contribute to 

improving the performance. According to this phenomenon, the number of features selected 

by each action is finalized as 15. 

 Regarding the number of actions within the action space, we considered two distinct 

approaches: randomly selecting 15 features from 58 features and selecting features with the 

top importance scores. When randomly selecting features, the number of combinations by 

choosing 15 features from 58 features is estimated to be 2.97 × 1013. A dimension of the 

action space on the scale of a trillion is impractical to be solved in discrete cases. The second 
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Fig. 6. Accuracy trend of random forest classifier regarding number of 
features. 

approach aims to select features based on the importance scores. For this purpose, this study 

employed Scikit-Learn APIs of feature selection techniques, including Recursive Feature 

Elimination (RFE), Recursive Feature Elimination with cross-validation (RFECV), 

SelectKBest, and Random Forest Classifier. Each of these techniques corresponds to a 

specific action, effectively reducing the size of the action space to four. 

 This configuration concludes the action space construction with four actions and 15 

features to be selected by each action. 

4.2.2 Hyper-Parameter Setting 

 This subsection explains the hyper-parameter settings for the feature selection techniques. 

 Given an importance score-based estimator, RFE removes the least important features 

recursively until the specified number of features is reached. In the experiment, the specified 
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number of features is 15. Cross Validation can be combined with Recursive Feature 

Elimination as Recursive feature Elimination with Cross Validation. The number of cross-

validation in RFECV is set to three for a faster convergence. The SelectKBest tool selects 

features with the highest k importance scores ranked by a score function. In the experiment, 

the score function utilized is Mutual Information for discrete class. As for the Random Forest 

Classifier, it ranks features based on importance scores that are calculated by using entropy 

or the Gini coefficient. 

 Since the external estimator used for RFE and RFECV is the random forest classifier, the 

grid search technique [31] is leveraged to determine the most suitable hyper-parameters. The 

criteria to be searched are the number of estimators, the function for measuring the split 

quality, the maximum depth, the minimum samples to split, and the minimum samples 

required for being a leaf node. Upon multiple running of grid search based on all 58 features, 

we decided to adopt the combination of hyper-parameters as displayed in Table 5. As 

depicted in Table 5, the bootstrap is set to True, consistent with the default setting. The 

criterion for evaluating the quality of node splitting is the Gini index. Each leaf node is 

configured to contain at least one sample, while a minimum of ten samples are required to 

split a non-leaf node. Lastly, the number of individual trees in the random forest ensemble is 

set to 125. 

 After grid searching, the random forest classifier is fitted with all 58 features. 

4.2.3 Feature Ranking Results 

 The resulting features for each action are summarized in Table 6 and Table 7, which form 

the first column of Table 2. 
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Table 5 
Random Forest Classifier Parameters 

Parameters Value 
bootstrap True 
criterion gini 
min_samples_leaf 1 
min_samples_split 10 
n_estimators 125 

Table 6 
Feature Rankings by RFE and RFECV 

Rank RFE RFECV 
1 Bwd Packet Length Min Flow Duration 
2 Bwd Packet Length Mean Total Length of Fwd Packet 
3 Flow Packets/s Total Length of Bwd Packet 
4 Flow IAT Mean Fwd Packet Length Min 
5 Flow IAT Max Bwd Packet Length Max 
6 Flow IAT Min Bwd Packet Length Min 
7 Fwd Header Length Bwd Packet Length Mean 
8 Bwd Packets/s Flow Bytes/s 
9 Bwd Segment Size Avg Flow Packets/s 
10 Subflow Bwd Bytes Flow IAT Mean 
11 FWD Init Win Bytes Flow IAT Std 
12 Fwd Seg Size Min Flow IAT Max 
13 Idle Mean Flow IAT Min 
14 Idle Max Fwd IAT Total 
15 Idle Min Fwd IAT Mean 

Table 7 
Feature Rankings by SelectKBest and RF 

Rank SelectKBest RF 
1 Flow IAT Max Flow IAT Min 
2 Flow Duration Idle Max 
3 Flow IAT Mean Bwd Packet Length Min 
4 Flow Packets/s Fwd Seg Size Min 
5 Fwd Packets/s Flow IAT Mean 
6 Bwd Packets/s Bwd Segment Size Avg 
7 Flow IAT Min Subflow Bwd Bytes 
8 Flow Bytes/s Flow Packets/s 
9 Average Packet Size Bwd Packet Length Mean 
10 Packet Length Mean Idle Mean 
11 Packet Length Max Fwd Header Length 
12 Packet Length Std Flow IAT Max 
13 Packet Length Variance Bwd Packets/s 
14 Bwd Segment Size Avg Flow Bytes/s 
15 Bwd Packet Length Mean Fwd Packets/s 
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 For RFE, the most important feature is identified as Bwd Packet Length Min while the 

feature with the 15th rank is Idle Min. Similarly, for RFECV, the most important feature is 

Flow Duration while the feature ranked as the 15th is Flow IAT Mean. Furthermore, there are 

common features that are selected by RFE, RFECV, SelectKBest, and RF. Features such as 

Bwd Packet Length Min, Flow Packets/s, and Flow IAT Max are consistently determined as 

informative for distinguishing between Tor and non-Tor traffic. 

 To verify the consistency of the feature selection results across multiple runs of RFE, 

RFECV, SelectKBest, and RF, the feature ranking of each run was compared. It is discovered 

that approximately 13 out of 15 features were consistently identified in each run, although 

their ranking positions may vary. As a result, the features from the last run are adopted as the 

final selection. 

4.3 Reward Function Experimentation 

 Initially, the efforts were on computing the weights of a linear equation such that the 

aggregate of weighted features separates Tor and non-Tor samples around a zero threshold. 

This approach resembles linear regression. Nonetheless, the empirical findings imply that the 

relationship between feature values and the labels is intricate. To address this issue, non-

linearity is introduced to facilitate separating Tor and non-Tor samples around the zero 

threshold. Based on the experiment, the hyperbolic tangent function is adopted. The 

subsections below discuss the outcomes. 

4.3.1 Hyperbolic Tangent-Based Reward Function 

 A single-layer neural network with no hidden layer is harnessed to implement the reward 

function mentioned in Equation (3). Specifically, the weights of the reward function are 
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derived from the trained neural network. The activation function at the output layer serves as 

the function for transformation. In each instance of the single-layer neural network, the input 

layer contains 15 neurons while the output layer has one neuron. The hyperbolic tangent 

function is employed at the output layer to map the linearly weighted summation of features 

onto a single value. 

 In preparation for training, the features of each sample undergo standardization to reach 

unit variance. The reason for applying standardization is that many feature values have a vast 

range. For instance, the idle max feature has a maximum value of 1.44 × 1015, whereas the 

Bwd Packet Length Min feature has a maximum value of 1,350. The class of StandardScaler 

class of sklearn [29] is leveraged to bring all feature values to the same scale. During the 

training phase, each neural network is trained in a supervised manner by using the PyTorch 

library. Stochastic gradient descent (SGD) with a learning rate of 0.001 is used as the 

optimizer. It is observed that the loss stops decreasing after 30 epochs. 

 Consequently, each neural network is trained with 30 epochs. After 30 epochs, it was 

found that the weights in each instance of the neural network fluctuated, even when the same 

feature set was applied. To determine the influence on the detection accuracy, we tested the 

performance of each trained neural network. The result is that varying weights after training 

do not reduce the accuracy, provided that the feature sets are used consistently across training 

and testing. As a result, the weights produced by the last run are finalized as the weights of 

each reward function. The results of the reward functions are recorded in Tables 8 and 9. 

 The results showcase that the ranking of weights does not align with the ranking of 

feature importance generated by the sklearn feature selection techniques. For instance, within  
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Table 8 
Weights Results by RFE and RFECV 

Rank W1 a1 (RFE) W2 a2 (RFECV) 
1 1.2904 Bwd Packet Length Min 0.2689 Flow Duration 
2 -0.0694 Bwd Packet Length Mean 0.1872 Total Length of Fwd Packet 
3 -0.0365 Flow Packets/s -0.1440 Total Length of Bwd Packet 
4 -0.0984 Flow IAT Mean 0.0584 Fwd Packet Length Min 
5 -0.0583 Flow IAT Max -0.1191 Bwd Packet Length Max 
6 -0.3272 Flow IAT Min 0.7849 Bwd Packet Length Min 
7 0.1684 Fwd Header Length 0.1817 Bwd Packet Length Mean 
8 -0.2140 Bwd Packets/s -0.5075 Flow Bytes/s 
9 -0.0785 Bwd Segment Size Avg -0.0699 Flow Packets/s 
10 0.1425 Subflow Bwd Bytes -0.1312 Flow IAT Mean 
11 0.0707 FWD Init Win Bytes -0.2003 Flow IAT Std 
12 0.4345 Fwd Seg Size Min -0.1743 Flow IAT Max 
13 0.0277 Idle Mean -0.2615 Flow IAT Min 
14 -0.2260 Idle Max -0.0326 Fwd IAT Total 
15 0.1763 Idle Min 0.2427 Fwd IAT Mean 

Table 9 
Weights Results by SelectKBest and RF 

Rank W3 a3 (SelectKBest) W4 a4 (RF) 
1 0.2543 Flow IAT Max -0.0083 Flow IAT Min 
2 0.6159 Flow Duration -0.2216 Idle Max 
3 -0.3229 Flow IAT Mean 0.1781 Bwd Packet Length Min 
4 -0.0131 Flow Packets/s 0.1014 Fwd Seg Size Min 
5 -0.2443 Fwd Packets/s -0.1772 Flow IAT Mean 
6 -0.1869 Bwd Packets/s -0.1262 Bwd Segment Size Avg 
7 -0.2665 Flow IAT Min -0.0275 Subflow Bwd Bytes 
8 0.1950 Flow Bytes/s -0.0723 Flow Packets/s 
9 -0.2263 Average Packet Size -0.0743 Bwd Packet Length Mean 
10 -0.4022 Packet Length Mean -0.1299 Idle Mean 
11 -0.2983 Packet Length Max 0.1927 Fwd Header Length 
12 -0.1267 Packet Length Std 0.0887 Flow IAT Max 
13 -0.3179 Packet Length Variance 0.2001 Bwd Packets/s 
14 0.4655 Bwd Segment Size Avg -0.1554 Flow Bytes/s 
15 0.6879 Bwd Packet Length Mean -0.2383 Fwd Packets/s 

 

the feature set selected via RFE, Idle Min has the lowest ranking along with a third-highest 

weight of 0.1763. Meanwhile, Flow IAT Max is ranked at the top position by SelectKBest. 

However, it has the third highest weight. This discrepancy suggests that the weights in a 

neural network and the feature importance are different metrics in evaluating the 

contributions of features to predictive performance. 
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1 
 Based on Tables 8 and 9, the reward function corresponding to each action is represented 

as R(s, at) = tanh(WT × at). Hence, the reward of a1 is calculated as R(s, a1) = tanh(WT × 

a1), where the weight set is transposed and multiplied with the features selected by action a1. 

4.4 Threshold Probing 

 Setting appropriate thresholds involves adjusting the level of sensitivity to Tor traffic. 

Since the target thresholds are expected to be around 0, the probing process initiates at 0. The 

Tor and non Tor thresholds were tested in the range of -1 to 1, and the incremental step is 

0.05. Fig. 7 depicts the trends. 

 
Fig. 7. True positive and true negative curve. 
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 Based on the variations of the true negative and true positive rates, the true positive and 

true negative rates increase when increasing the Tor and non Tor thresholds from -1 to 0. 

However, the true negative and true positive rates decrease as the thresholds keep increasing 

after 0. To maximize the true positive and true negative rate, the Tor and non Tor 

thresholds are finalized as -0.1 and -0.3 respectively. 

4.5 Results of Model Testing 

 The testing procedure of the unsupervised model is conducted in a supervised manner. 

Specifically, every time a reward value is obtained, the reward value is compared with the 

thresholds. The state to which the agent transits is compared with the known label for the 

current sample. If the state and label match, the sample is correctly identified. Conversely, if 

the state and label do not match, the samples are misclassified. In the event of entering the 

ambiguous state, the agent continues to apply the subsequent actions until it receives a reward 

value of either above the Tor threshold or below the non Tor threshold. If all four actions are 

applied but the agent remains in the ambiguous state, the agent classifies the sample as 

ambiguous. Depending on the administrative configurations, these samples can be flagged as 

malicious and further analyzed by other IDS tools. 

 Fig. 8 presents a breakdown of true positives, true negatives, false positives, and false 

negatives. Based on the confusion matrix, 36,825 Tor samples are correctly identified, while 

8,886 Tor samples are misclassified as non-Tor. As for non-Tor samples, 38,286 are correctly 

classified, while 7,486 samples are misclassified as Tor samples, resulting in false positives. 

Using the accuracy formula, or (true positive + true negative)/(true positive + true negative + 

false positive + false negative), the accuracy rate is calculated as 82%. Additionally, the  
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Fig. 8. Confusion matrix of detection accuracy. (Note that Tor threshold=-0.1 
and Non-Tor threshold=-0.3). 

performance was evaluated using the metrics of recall and precision. The result is that the 

precision is 0.83 and the recall is 0.81. Nonetheless, the cumulative count of samples is 

91,483, which is equivalent to the size of the dataset, indicating that no sample is labeled 

ambiguous by the detection model. This outcome demonstrates that the features selected by 

all four actions can effectively make the model deduce the type of each traffic sample. 

 Fig. 9 illuminates the reward value distribution with respect to the thresholds. The Tor 

Threshold is set at -0.1, the non-Tor threshold is set at -0.3. The dashed black horizontal lines 

denote the thresholds. 

 Within Fig. 9, the figure labeled as Tor distribution represents instances where Tor 

samples are correctly classified. Those correctly classified Tor samples have a reward value 

surpassing the Tor threshold. Meanwhile, the figure labeled as Non-Tor distribution 

showcases instances where non-Tor samples are correctly classified. Those correctly 

classified non-Tor samples have a reward value below the non Tor threshold. 
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Fig. 9. Reward value distributions. 

 It is observed that plenty of reward values of Tor samples clustered above the -0.1 

threshold. Similarly, a significant number of non-Tor samples clustered below the -0.3 

threshold. Especially, reward values of non-Tor samples distributed densely below the -0.3 

threshold. 

 The latency of the proposed system is measured. As a real-time traffic monitoring tool, the 

system is expected to respond promptly and make decisions within tight time constraints. To 

measure the latency, the time elapsed of processing 91,483 traffic flows is recorded. In this 

measurement, the recorded time for processing 91,483 traffic flows ranged from 1 to 1.2 

seconds. This indicates that the system operates within an acceptable time frame. 

4.6 Model Comparisons 

 The performance of the proposed system was compared with supervised baselines by 

accuracy. The baselines are the CNN model (DeepImage) described in [10], the stacking 

ensemble model developed by [12], the Random Forest Classifier in our experiment, the 

improved decision tree algorithm (Tor-IDS) [18], and the random forest tested on the 

Anon17 dataset [16]. Table 10 lists the comparison results. 
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Table 10 
Comparison of Model Performance 

Model Dataset Accuracy 
Proposed Real-Time System CIC-Darknet2020 0.82 

DeepImage [10] CIC-Darknet2020 0.95 
Random Forest by Grid Search CIC-Darknet2020 0.97 

Ensemble Model [12] CIC-Darknet2020 0.98 
Tor-IDS [18] Self-Collected Network Traffic 0.99 

Random Forest [16] Anon17 0.99 
 

 The comparison results indicate that all supervised models have outstanding performance 

in identifying Tor traffic patterns. Among those models, the improved decision tree algorithm 

and the random forest implementation [16] have the highest accuracy at up to 0.99, followed 

by the ensemble model at 0.98, the random forest classifier in our experiment at 0.97, and the 

DeepImage model at 0.95. Notably, the proposed model lags behind the supervised models in 

terms of accuracy, while it achieved an accuracy level exceeding 80%. The differences in 

performance can be attributed to the high efficacy of supervised models in processing static 

and historical data. In particular, ensemble models and random forest models have been 

highly effective in classification tasks based on voting mechanisms. However, it is important 

to underscore that the proposed model targets to operate in an unsupervised mode. This 

strategy addresses the challenges posed by the lack of labeled data in real-time network 

environments. As a trade-off, the proposed model is designed with the support of a single 

dataset. Furthermore, it does not rely on archived labeled data for its operation. Additionally, 

each of the single-layer neural networks used for emulating the reward functions has a simple 

structure and fast training time. With continued improvements, the accuracy achieved is 

considered satisfactory in this study. Ultimately, those aspects make deployments of this 

system to real-time situations more practical and robust. 
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5 SUPPLEMENTAL DESIGNS 

 This is a separate section that explains the issues encountered in the preliminary designs 

of the detection model. 

5.1 Reward Function and Threshold Setting 

5.1.1 Linear Regression-Based Reward Function 

 Due to limited information about the influence of chosen features on prediction accuracy, 

the raw importance scores produced by the Random Forest Classifier were used as the 

weights. Meanwhile, the importance scores are scaled such that they sum to 1. The reason is 

to emphasize the impact of feature importance on prediction accuracy. Table 11 summarizes 

the rank. The result is that Idle Max is ranked the most important and Idle Mean is ranked the 

10th most important with a score of 0.03748. According to Table 11, the reward function is 

represented as 

r = (0.05232 × f1 + 050376 × f2 + ... + 0.03748 × f10) 

where f1 is Idle Max and f10 is Idle Mean. 

Table 11 
Importance Ranking by Random Forest 

Feature Feature Importance Score 
1 Idle Max 0.05232 
2 Bwd Packet Length Min 0.050376 
3 Fwd Seg Size Min 0.04712 
4 Flow IAT Min 0.0442712 
5 Flow Bytes/s 0.040979 
6 Fwd Header Length 0.040552 
7 Flow IAT Mean 0.040008 
8 Bwd Packets/s 0.039743 
9 Flow IAT Max 0.038301 
10 Idle Mean 0.03748 
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5.1.2 Weighted Mean-Based Threshold 

 Built upon the linear reward function, the threshold was derived by averaging the rewards 

of all samples. In the experiment, we consider samples with a reward of below average as 

non-Tor and samples with a reward of above average as Tor. The result is that 66% of 91483 

samples conform to this distribution. Since the importance scores vary slightly among trials 

while keeping the hyperparameters fixed of the Random Forest Classifier, it is difficult to 

enhance the performance by optimizing the weight values. As a result, a hyperbolic tangent 

transformation is added to facilitate the classification task, as shown in Equation 3. 

5.2 MDP Formalization 

 In the initial detection model, the transition between states depends on the value of the 

immediate reward. However, this environment model is different from a typical transition 

probability, where the immediate reward is not expected to interfere with the transition 

probability. To address this problem, we attempted to formalize the MDP by collecting 

trajectories of the agent interacting with the environment. In each trajectory, the sequence of 

the state, action, and reward at each time step was recorded in the form of τ = (s1, a1, r1, s2, a2, 

r2, ..., sN). The cumulative reward along a trajectory, V, is the value of each trajectory, which 

is written as 

∞ 

V = ∑ γ−t ×rt 
t=0 

 By observing the values of si, ai, and ri, the agent aims to improve a policy by 

maximizing V , or the cumulative reward. Nevertheless, considering there is no terminal state 

in the network environment, the design focused on setting the thresholds properly and 

implementing an unsupervised detection model based on reinforcement learning. 
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6 FUTURE WORK 

 Due to constraints in developing a comprehensive detection model on a local machine and 

the challenges of simulating Tor networks in a cloud environment, we were unable to extract 

and analyze data on DNS delay time, bandwidth of Tor relays, and darknet server 

specifications. Given the possible misuse of the Tor network and attacker behaviors, these 

features are inferred to play a pivotal role in distinguishing between malicious and benign 

anonymous traffic. As emphasized previously, differentiating malicious from benign 

anonymous traffic is essential for thwarting penetrations and preserving privacy. Therefore, it 

is worth continuing the experiment in this track. Beyond these features, the efficacy of the 

proposed model can be tested on other public anonymous traffic datasets. The performance 

will be compared across different datasets. 

 What’s more, within the context of internetworking, the environment model along with 

the dependencies among sequential flows remain unverified. In future work, we intend to 

examine the environment model by controlling the generation of each traffic flow. The 

insights will be further applied to adapt sequential decision-making frameworks to anonymous 

traffic detection. 
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7 CONCLUSIONS 

 Anonymous networks protect user’s identity by relaying data through a distributed 

network. By using tools such as the Tor network, the transmitted data are hard to read and 

trace. On the other hand, traffic from anonymous networks can be suspicious or malicious. 

Therefore, detecting anonymous traffic in real-time is crucial yet inherently difficult. Some 

supervised learning methods have been proposed and have demonstrated outstanding 

performance on static data. However, some models exhibit the shortcomings of time-

consuming and low adaptability. Thus, an effective real-time detection system for anonymous 

traffic contributes significantly to mitigating cyber threats. 

 This work developed an unsupervised real-time system for detecting anonymous traffic 

by using a labeled dataset containing 141,530 samples. Features that are most informative 

about Tor and non-Tor traffic were extracted to define the tuple containing the information 

about the state, action, and reward. Upon deployment, the system continuously monitors TCP 

flows and observes relevant features. Instead of using training data, the system makes 

decisions by reward signals from the environment and compares each reward value with the 

predefined thresholds. Based on comparison results, the agent adjusts its actions and traverses 

to either the Tor or Non-Tor state. In the testing phase, the model was gauged in a supervised 

manner. The result indicates that the accuracy of the model for detecting anonymous traffic is 

82%. 
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