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ABSTRACT 

CLOUD PHASE DISTRIBUTIONS AT A GLOBAL-SCALE AND THE GOVERNING 
FACTORS USING SATELLITE AND IN-SITU AIRBORNE OBSERVATIONS 

by Dao Wang 

Cloud thermodynamic phase distributions play a crucial role in accurately representing 

cloud radiative effects and feedback in a changing climate. The partitioning of cloud 

thermodynamic phases (ice, liquid, and mixed phase) significantly influences Earth's surface 

temperature and its ability to mitigate the impact of global warming. Satellite-based cloud 

phase data are frequently used for the evaluation of global climate models, yet validation of 

them against in-situ observations is still lacking. This study examines global cloud phase 

distributions and their determinant factors by validating three satellite-based cloud phase 

products against an extensive in-situ airborne dataset. CALIPSO exhibits the most similar ice 

phase profiles, CloudSat tends to overestimate mixed phase frequency, and DARDAR 

overestimates ice phase frequency. The comparison results reveal variations in ice phase 

frequency across latitudes and seasons. Spatiotemporal mismatches have minimal impacts on 

the main findings, emphasizing statistical robustness. Machine learning techniques are 

employed to explore key determinant factors, such as temperature, relative humidity, vertical 

velocity, and aerosol effects. Temperature is the most influential factor in cloud phase 

distribution, while relative humidity determines in-cloud and clear-sky conditions. This study 

provides guidelines for globally validating satellite-based cloud products and enhances our 

understanding of factors influencing cloud phase distributions. 
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1. Validation of Satellite-based Cloud Phase Distribution Using Global-Scale In-Situ 
Airborne Observations 

1.1 Introduction 

Three cloud thermodynamic phases – liquid, mixed, and ice phase, have different radiative 

effects on the Earth’s incoming and outgoing radiation. A previous study using satellite 

observations showed that the liquid, mixed and ice phases have negative, positive, and negative 

net cloud radiative effects (CRE) at the top of the atmosphere (Matus & L’Ecuyer, 2017). 

These differences in CRE can be explained by the vertical level, microphysical and 

macrophysical properties of different types of clouds. For example, liquid clouds are generally 

located in the lower troposphere, reflect more incoming shortwave radiation, and have 

relatively longer lifetime. On the other hand, ice clouds, such as cirrus clouds, tend to be higher 

in altitude and more transparent for shortwave radiation. They also trap outgoing longwave 

radiation and reheat the atmosphere. In fact, the higher and colder clouds have a greater 

warming effect on the Earth’s system due to the larger temperature difference between the 

cloud layers and surface (Liou, 1992; Lohmann & Gasparini, 2017). 

Simulations of Earth’s climate are largely affected by the representation of cloud phases in 

global climate models (GCMs). Previously, the GCMs in the  Coupled Model Intercomparison 

Projects 3 (CMIP3) and 5 (CMIP5) were found to have a large radiative bias over the Southern 

Ocean (e.g., Bodas-Salcedo et al., 2012, 2014, 2016; Frey & Kay, 2018; Kay et al., 2016; 

McCoy et al., 2014a, 2014b), mainly due to the misrepresentation of liquid phase below 0°C 

(i.e., supercooled liquid water) in the model parameterizations. These studies show radiative 

biases in the GCMs can be up to 10–20 W m-2 in the southern high latitudes due to the 

underestimation of reflected shortwave radiation by the supercooled liquid water. In addition, 



 

2 

other studies found that cloud feedback to a changing climate is also highly sensitive to the 

current state of the cloud phase (e.g., Flynn & Mauritsen, 2020; Tan et al., 2016; Terai et al., 

2016; Zelinka et al., 2020). This is because the currently existing ice crystals could turn into 

liquid droplets as temperature increases and such a melting process would absorb energy from 

the surrounding air, acting as a buffer to global warming. This process is known as the cloud 

phase feedback in the climate system (Mitchell et al., 1989). 

It is crucial to observational data to improve cloud parameterizations in GCMs, especially 

for accurately representing cloud phases. Satellite data have been frequently used to compare 

the global distributions of cloud phases and the associated radiative effects with various GCMs 

(e.g., Ahn et al., 2018; Barker et al., 2008; Ceccaldi et al., 2013; Cesana & Storelvmo, 2017; 

Hu et al., 2021). CALIPSO and CloudSat are two of the satellites from the original Afternoon 

Constellation (A-Train), equipped with LiDAR and RADAR active sensors, respectively. 

These two sensors have the advantage of providing near global, daily coverage cloud properties 

for over a decade. These sensors measure real-time observations that have the potential to vary 

significantly through time, whereas passive sensors with a perspective from space usually 

measure column-integrated quantities (Yost et al., 2010). Several previous studies used 

different types of products derived from CALIPSO and CloudSat to validate GCMs. Tan et al. 

(2016) used CALIPSO data to improve the representation of supercooled liquid water in the 

NCAR CAM6 model. Bodas-Salcedo et al. 2014 used the CALIPSO-GOCCP data to validate 

several climate models. Kay et al. 2016 use the COSP simulator, which is a satellite remote 

sensing simulator equipped with the NCAR CESM model. 
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Data qualities of these satellite products are therefore important for increasing the fidelity 

of climate predictions. They are not only dictated by the nature of the sensors but also by the 

algorithms used to process the retrievals. The impacts of using different algorithms were 

evaluated by Cesana et al. (2016). They compared three CALIPSO LiDAR-only cloud phase 

products to identify the differences in cloud phase identification caused by algorithms and 

instrumental designs. Three satellite-derived cloud phase products are frequently used for 

analyzing cloud phase distributions on a global scale, including LiDAR-only CALIPSO 

Vertical Feature Mask (VFM) (Y. Hu et al., 2009; Vaughan et al., 2019), RADAR-LiDAR 

combined CloudSat (Wang, 2019) and DARDAR (Delanoë and Hogan, 2008a) products. 

However, no previous study has validated all three products against in-situ observations. While 

the CALIPSO cloud phase product is solely based on CALIOP lidar measurements, the data 

generation processes of CloudSat and DARDAR cloud phase products integrate the combined 

lidar and radar measurements from CALIPSO and CloudSat. It is unclear if using the combined 

lidar and radar measurements would reduce the uncertainty in cloud phase identification 

compared with solely using the lidar measurements. In addition, since the CALIPSO lidar 

sensor has limited detection of optically thick clouds or multi-layer clouds, the CALIPSO 

observations potentially have a biased sampling of cloud top properties in these scenarios 

(Cesana et al., 2016). Thus, it is unclear if the frequency distributions of in-cloud conditions 

versus clear-sky conditions would differ between lidar and the combined lidar + radar datasets.  

Several main challenges exist for validating satellite observations against other types of 

measurements. For example, ground-based observations have fixed locations at a limited 

number of ground stations, which cannot be used to validate the global-scale distributions of 
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cloud phases for satellite products. In-situ airborne observations use a moving platform and 

therefore have relatively larger geographical coverage than ground-based observations, but it 

requires multiple aircraft flight campaigns to achieve a global view. Previously, Diao et al. 

(2013) also quantified in impacts of arbitrary selection of comparison windows for selecting 

satellite and aircraft observations collocated in space and time based on validation of the 

NASA AIRS-AMSU-A satellite for its retrieval of temperature and water vapor.  

Expanding on to the few previous studies that used a limited number of research flights for 

validating satellite observations of cloud phases at a specific geographical location, this study 

broadens the scope by providing a global-scale perspective of cloud phase distributions using 

a composite in-situ dataset and three frequently used satellite cloud phase products (i.e., 

CALIPSO, CloudSat, and DARDAR). A compositive in-situ observation dataset is developed 

using 11 NSF campaigns with a spatial coverage nearly from Pole to Pole (Longitude: 128°E 

~ 180°E and 180°W ~ 37°W; Latitude: 84°N ~ 75°S). Additionally, several key factors 

affecting the cloud phase distributions and the satellite comparison results are investigated, 

including various latitudinal and longitudinal locations seasonal variability, and spatiotemporal 

variabilities (ranging from tens to hundreds of kilometers, as well as 3–12 hours). This work 

is designed as follows. Detailed descriptions of in-situ and satellite cloud phase datasets are 

given in Section 1.2. In Section 1.3, two different sampling methods to select satellite data for 

comparisons with in-situ aircraft observations are described. The results are shown in Section 

1.4, where we quantify, visualize, and investigate the individual factors affecting the 

occurrences of clouds and cloud phases. Lastly, Section 1.5 summarizes the key conclusions 

and provides implications for future satellite retrieval development. 
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1.2. Data and Methods 

Several observational platforms and datasets are described below, including in-situ 

observations from eleven flight campaigns funded by the US National Science Foundation 

(NSF) and three satellite-based cloud phase products. Detailed information of in-situ observed 

and remotely sensed datasets are described in Tables 1 and 2, respectively.  

Table 1. Summary of eleven NSF campaigns, including their name, the number of 
research flights, time, location, and flight hours. 

 
Campaign Name and 
abbreviation 

 
# of 

Flights 

 
Time of the 
Campaign 

 
Longitude 
and 
latitude 
coverages 

 
Flight 
Hours 

 
All- Sky 
Hours 

 
Clear-
Sky 
Hours 

 
In- 
Cloud 
hours 

 
Stratosphere-
Troposphere Analyses of 
Regional Transport 
(START08) 

 
18 

 
April – June 
2008 

 
26°N – 62°N, 

118°W – 86°W 

 
121 

 
28 

 
23 

 
5 

 
HIAPER Pole-to-pole 
Observations - 
deployments 2 – 5 (HIPPO 
2-5) 

 
46 

 
Oct–Nov 
2009; Mar– 
Apr 2010; 
Jun–July 
2011; Aug– 
Sept 2011 

 
84°N – 67°S, 

128°E – 
105°W 

 
333 

 
140 

 
117 

 
23 

 
PRE-Depression 
Investigation of Cloud 
Systems in the Tropics 
(PREDICT) 

 
26 

 
Aug – Sept 
2010 

 
10°N – 28°N, 

87°W – 37°W 

 
175 

 
11 

 
10 

 
1 

 
Deep Convective Clouds 
and Chemistry Project 
(DC3) 

 
22 

 
May – June 
2012 

 
26°N – 42°N, 

107°W – 79°W 

 
136 

 
37 

 
31 

 
6 

 
Tropical Ocean 
tRoposphere Exchange 
of Reactive halogen 
species and Oxygenated 
voc (TORERO) 

 
17 

 
Jan – Feb 
2012 

 
42°S – 13°N, 

106°W – 70°W 

 
134 

 
30 

 
29 

 
1 

 
CONvective TRansport 
of Active Species in the 
Tropics (CONTRAST) 

 
17 

 
Jan – Feb 
2014 

 
21°S – 41°N, 

133°E – 
105°W 

 
128 

 
22 

 
20 

 
2 

 
Wintertime Investigation 
of Transport, Emissions, 
and Reactivity 
(WINTER) 

 
13 

 
Feb – March 
2015 

 
29°N – 42°N, 

86°W – 67°W 

 
95 

 
57 

 
54 

 
3 



 

6 

 
Cloud Systems Evolution 
in the Trades (CSET) 

 
16 

 
July – August 
2015 

 
20°N – 43°N, 

118°W – 
157°W 

 
114 

 
43 

 
42 

 
1 

 
The O2/N2 Ratio and 
CO2 Airborne Southern 
Ocean Study (ORCAS) 

 
18 

 
Jan – Mar 
2016 

 
75°S – 19°S, 

92°W – 50°W 

 
95 

 
40 

 
33 

 
7 

 
Southern Ocean Clouds, 
Radiation, Aerosol 
Transport Experimental 
Study (SOCRATES) 

 
15 

 
Jan – Feb 
2018 

 
62°N – 43°N, 

133°W – 
164°W 

 
112 

 
87 

 
74 

 
13 

 
Organization of Tropical 
East Pacific Convection 
(OTREC) 

 
22 

 
Aug – Sept 
2019 

 
3°N – 13°N, 

95°W – 77°W 

 
123 

 
9 

 
7 

 
2 

 
All campaign combined 

 
230 

   
1566 

 
504 

 
440 

 
64 

 

Table 2. Descriptions of three satellite products and their cloud phase variables 

 
Satellite and 
Instrument 

 
Data 
Availability 

 
Dataset 

 
Variables 

 
Phase 
Categorization 

 
Resolution 

 
CloudSat – CPR 
(Cloud Profiling 
Radar) 

 
2006/06/12 
d.163 ~ 
current 

(Missing: 
2017/12/06 ~ 
2018/08/10) 

 
2B- 
CLDCLAS 
S-LIDAR 

 
CloudPhase 

 
1 = Ice Cloud 

2 = Mix Cloud 

3 = Liquid Cloud 

-9 = Missing 
Value 

 
Vertical: 240 m 

Horizontal: 
1.4km x 1.8km 

 
CALIPSO - 
CALIOP (Cloud- 
Aerosol Lidar with 
Orthogonal 
Polarization) 

 
(V4.20) 
2006/06/12 ~ 
2020/06/30 

(V4.21) 
2020/07/01 ~ 
current 

 
LID_L2_V 
FM- 
Standard- 
V4-20 

 
Feature_Classific
ation_Flags 

 
0 = Unknown/Not 
Determined 

1 = Ice 

2 = Water 

3 = Horizontal 
Oriented Ice 

 
Vertical/Horizont
al resolution: 

30m/333m (−0.5 
km to 8.2 km) 

60m/1000m (8.2 
to 20.2 km) 

180m/1667m 
(20.3 to 30.1 km) 
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DARDAR 
(raDAR/liDAR) 

 
(v2.1.1) 
2006/06/15 ~ 
2017/10/25 

 
DARDAR- 
CLOUD_v2 
.1.1 

 
DARMASK_Si
mplified_Categor
ization 

 
-9 = ground 

-1 = do not know 

0 = clear 

1 = ice 

2 = ice + 
supercooled 

3 = liquid warm 

4 = supercooled 

5 = rain 

6 = aerosol 

7 = maybe insects 

8 = stratospheric 
feature 

 
Vertical: 60 m 

Horizontal: 
1.1 km 

 

1.2.1. In Situ Airborne Observations 

A total of 11 NSF campaigns are used in this study, including the Stratosphere-Troposphere 

Analyses of Regional Transport (START08) (Pan et al., 2010), the HIAPER Pole-to-Pole 

Observations (HIPPO) (Wofsy, 2011), the PRE-Depression Investigation of Cloud Systems in 

the Tropics (PREDICT) campaign (Montgomery et al., 2012), the Deep Convective Clouds 

and Chemistry Project (DC3) (Barth et al., 2015), the Tropical Ocean tRoposphere Exchange 

of Reactive halogen species and Oxygenated voc (TORERO) campaign (Volkamer et al., 

2015), CONvective TRansport of Active Species in the Tropics (CONTRAST) campaign (Pan 

et al., 2017), the Wintertime INvestigation of Transport, Emissions, and Reactivity (WINTER) 

campaign (Thronton et al., 2014), the Cloud Systems Evolution in the Trades (CSET) 

campaign (Albrecht et al., 2019), the O2/N2 Ratio and CO2 Airborne Southern Ocean Study 

(ORCAS) (Stephens et al., 2018), the Southern Ocean Clouds, Radiation, Aerosol Transport 

Experimental Study (SOCRATES) (McFarquhar et al., 2021), and the Organization of Tropical 
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East Pacific Convection (OTREC) campaign (Fuchs-Stone et al., 2020). The comprehensive 

dataset covers a longitude range of 120°E – 40°W and a latitude range of 75°S – 90°N, 

providing us with a unique analysis of global cloud phase distribution.  

NSF Gulfstream-V research aircraft was the main platform for 10 out of 11 NSF 

campaigns, except for the WINTER campaign, which use the NSF C-130 research aircraft. 

Various sizes of cloud hydrometeors are measured by several in-situ cloud probes, including 

the Cloud Droplet Probe (CDP), the Fast-2 Dimensional Cloud (Fast-2DC) probe, and the Two 

Dimension Stereo (2DS) cloud probe. The measurement ranges of these cloud probes are as 

follows: 2 – 50 μm for CDP, 62.5 – 3200 μm for 2DC, and 40 – 5000 μm for 2DS. For almost 

all the 11 NSF campaigns, the CDP and 2DC probes are used to derive cloud microphysical 

properties. Only for the NSF SOCRATES campaign, CDP and 2DS probes were used due to 

quality issues with the 2DC probe in several research flights in that campaign. 

For each in-situ cloud probe, the number concentrations of particles are reported at 1-Hz 

resolution. The 1-Hz measurements of each cloud probe are further categorized into large 

aerosols, liquid droplets (including supercooled liquid droplets), and ice crystals. This phase 

identification method was previously described in D’Alessandro et al. (2019) and Yang et al. 

(2021) with more details. Fundamentally, this method uses the relationship between particle 

number concentration (NCDP) and mass concentration (MCDP) of the CDP probe to define 

whether the 1-Hz observations are (i) large aerosols (satisfying either NCDP ≤ 10−1.5 cm−3 or 

MCDP ≤ 10−3.4 g m−3); (ii) liquid droplets (satisfying both NCDP ≥ 10−0.5 cm−3 and MCDP > 

10−3.4 g m−3); or (iii) ice crystals (satisfying both 10−1.5 < NCDP < 10−0.5 cm−3 and MCDP 

> 10−3.4 g m−3). The phase identification for the 2DC and 2DS probes are similar to each 



 

9 

other, which uses parameters such as ambient temperature, particle number concentrations, 

maximum particle diameter, and the standard deviation of particle size distribution to define 

either liquid or ice dominant 1-Hz  measurements. Furthermore, visual inspections as well as 

intercomparisons with other in-situ probes such as Rosemount ICEing (RICE) probe and King 

probe are also part of the quality control routine to verify the automatically designated cloud 

phase. 

After categorizing the 1-Hz observations of individual cloud probes, liquid water content 

(LWC) and IWC are calculated for each second of measurement by each probe. For the 1-Hz 

observations defined as liquid droplets, spherical shape, and liquid water density are used for 

calculating LWC. To derive IWC for observations defined as ice crystals, small ice particles 

(i.e., diameter ≤ 75 um) derive IWC using the mass-Dimension (m-D) relationship for small 

ice based on Brown and Francis (1995), while the m-D relationship of large ice in that paper 

was used to derive IWC for large ice crystals (diameter >75 μm). Lastly, the total IWC and 

total LWC are derived by combining the IWC or LWC from individual cloud probes, 

respectively. Ice mass fraction is calculated using the total IWC divided by the sum of total 

IWC and total LWC. Such ice mass fraction at three ranges (<0.1, 0.1 – 0.9, and >0.9) each 

represent liquid phase, mixed phase, and ice phase based on integrated in-situ observations at 

1-Hz resolution. These three cloud phases are further used for validating the three satellite 

products described below. 

1.2.2. NASA CALIPSO (LID_L2_VFM_Standard-V4-20) 

The NASA CALIPSO satellite carries the Cloud-Aerosol Lidar with Orthogonal 

Polarization (CALIOP), which is a spaceborne dual-wavelength polarization lidar using an 



 

10 

Nd:YAG laser that operates at 1064 nm and 532 nm (Y. Hu et al., 2009; Winker et al., 2007). 

CALIOP, which is designed with a broad dynamic range, has the unique advantage of 

measuring a variety of aerosols and cloud hydrometeors. High-resolution vertical profiles of 

clouds and aerosols, including their microphysical and optical properties, have been provided 

near globally since the CALISPO satellite was launched in April 2006. 

The primary data product from CALIPSO used in this paper is the Vertical Feature Mask 

(VFM), which is a Level 2 product. The VFM data categorizes the spatial distributions of 

various features, such as cloud type, aerosol type (e.g., dust, polluted smoke, etc.), and cloud 

thermodynamic phase (Vaughan et al., 2004). Quantities derived from CALIOP retrievals, 

such as backscatter and linear depolarization ratio, can be used to identify particle sizes and 

orientations, which can be further used to separate ice and liquid phases (Sassen, 1991).  

Cloud phase product is provided by “Feature_Classification_Flags” inside the files named 

“LID_L2_VFM-Standard-V4-20” (Table 2). The cloud phase product has different vertical 

and horizontal resolutions at three different altitudinal regions, as explained in Hunt et al. 

(2009) in their Table 4. The low-altitude region is located between -0.5 km and 8.2 km, with a 

vertical (horizontal) resolution of 30 m (333 m). The mid-altitude region is located from 8.2 

km to 20.2 km, with a vertical (horizontal) resolution of 60 m (1 km). The high-altitude region 

is from 20.2 km to 30.1 km, with a vertical (horizontal) resolution of 180 m (1.667 km). The 

cloud phase product includes three categories – liquid, ice, and horizontal-oriented ice (HOI). 

In this study, HOI was grouped into the ice phase.  
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1.2.3. NASA CloudSat (2B-CLDCLASS-LIDAR) 

The CloudSat cloud phase product is derived from the combination of CALIPSO CALIOP 

lidar and CloudSat Cloud Profiling Radar (CPR) observations. The “Cloud Phase” variable 

from the 2B-CLDCLASS-LIDAR product is used in this work (Table 2). This cloud phase 

dataset has a vertical resolution of 240 m and a horizontal resolution of 1.4 km by 1.8 km 

(Deng et al., 2010).  

The CloudSat CPR radar uses 94 GHz sensors. Their signals travel through the atmospheric 

medium with bidirectional attenuation due to absorption by liquid water droplets, precipitation-

sized particles, and gas (mainly water vapor). Since the lidar and radar have different 

sensitivities to different sizes and orientations of particles, the combined radar and lidar data 

could potentially complement each other when identifying cloud layers and cloud phases. 

Several fundamental differences in ice and liquid phase are used to develop the algorithm for 

identifying cloud phases (Wang, 2019; Wang & Sassen, 2001). Ice particles in clouds are 

significantly larger than water droplets, leading to distinct vertical distributions. Large ice 

particles have a terminal falling velocity of approximately 1 m/s, while small water droplets 

have falling speed that are negligible. This disparity in falling speeds affects the vertical 

distribution of clouds. In ice clouds, large particles tend to accumulate near the lower region, 

whereas in water clouds, larger water droplets are typically found closer to the top. Stratiform 

mixed phase clouds exhibit rapid ice particle growth within the mixed-phase layer, resulting 

in the formation of ice virga or precipitation beneath this region. Furthermore, there are orders 

of magnitude differences in the number concentrations of cloud droplets and ice crystals. Ice 

crystal number concentrations generally increase with decreasing temperature and can range 
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from less than 1/L to as high as 100/L in the temperature range where homogeneous ice 

nucleation occurs. In contrast, water droplet concentrations range from as low as 10 cm⁻³ in 

clear marine boundary layers to as high as 500 cm⁻³ in polluted continental boundary layers 

(Wang, 2019). 

1.2.4. DARDAR (raDAR/liDAR) project (DARDAR_CLOUD.v2.1.1) 

The DARDAR (raDAR/liDAR) project uses the integrated the CloudSat radar and the 

CALIPSO lidar observations and retrieves cloud properties. This project is supported by 

Laboratoire Atmosphères, Milieux, Observations Spatiales, and the University of Reading. The 

cloud phase product used in this study is part of the DARDAR-CLOUD dataset. It is similar 

to the CloudSat 2B-CLDCLASS-LIDAR product as they both use CALIOP and CPR 

measurements, but DARDAR uses a different algorithm to define cloud phases. The algorithm 

“Varcloud” is developed based on Delanoë and Hogan (2008b), providing several cloud 

properties, including ice water content (IWC), visible extinction coefficients, ice cloud 

effective radius (re), etc. 

The cloud phase variable is stored as “DARMASK_Simplified_Categorization”, which has 

a vertical resolution of 60 m and a horizontal resolution of 1.4 km (Delanoë and Hogan, 2008a). 

DARDAR cloud mask includes ice, ice + supercooled, liquid warm, supercooled, rain, and 

other aerosol indicators (Table 2). In this study, liquid warm, supercooled, and rain were 

classified as liquid phase. The category called “ice + supercooled” is categorized as the mixed 

phase. 
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1.3. Comparison Methods 

This study developed two methods to compare satellite observations with in-situ airborne 

observations (Fig. 1). The main differences between the two methods are the spatial and 

temporal windows used to select satellite observations surrounding in-situ observations. 

Ideally, selecting a satellite observation sample that is perfectly collocated at the same time 

and location as an in-situ observation sample would minimize the impacts of spatial and 

temporal mismatches on the comparison results. Yet this type of perfect collocation is very 

rare in reality since both satellites and aircraft are moving objects in space and time with 

different trajectories and velocities. For example, CALIPSO and CloudSat are both sun-

synchronous and orbit the Earth at an altitude of 705 km with a speed of approximately 7 km/s 

(Winker et al., 2003; Stephens et al., 2002). Conversely, the NSF Gulfstream-V research 

aircraft usually operates between the surface and 14 km in altitude with a true airspeed of 

around 200–250 m/s. Furthermore, aircraft campaigns often have limited geographical 

coverage and durations compared with the near global coverage of satellite observations. In 

addition, very few campaigns were specifically designed to follow the satellite trajectories in 

order to validate satellite observations (Barker et al., 2008). To overcome these challenges, this 

study developed two methods for sampling satellite data at various ranges of spatiotemporal 

windows, described as follows.  

1.3.1. Method 1: selecting satellite samples in proximity to 1-Hz in-situ observations 

Method 1 first selects satellite samples that are within a time window, which is from 12 

hours before the first second of each research flight (RF) to 12 hours after the last second of 

that flight. These samples are further reduced to a spatial window bounded by the maximum 
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and minimum values of the latitude and longitude of that specific flight. For each pair of 

satellite and 1-Hz in-situ observation samples being compared, their differences in time 

(dTime) and in horizontal space (dDist) are calculated. Specifically, dDist represents the arc 

distance between two samples using their latitudinal and longitudinal positions. An additional 

restriction is applied to each satellite sample, which is dDist has to be within ± 200 km 

surrounding each second of in-situ observations. This method of selecting a range of dTime 

and dDist for comparing satellite and aircraft observations is similar to that used in Diao et al. 

(2013) as illustrated in their Figure 4. 

After applying these restrictions, vertical columns of satellite samples are selected 

surrounding each second of in-situ observations. To further restrict the vertical levels for 

comparisons, each second of aircraft is matched with only one altitudinal bin inside a vertical 

column of a certain satellite product. This altitudinal bin is the layer which the 1-D flight track 

is transected through. The satellite samples selected via Method 1 for three datasets – 

CALIPSO, CloudSat, and DARDAR are illustrated in Fig. 1a-1c, respectively. The CALIPSO 

and CloudSat longitudinal and latitudinal positions were based on their respective orbit as part 

of the A-Train constellation, while the location of the DARDAR product is based on the 

collocated footprints of CALIPSO-CloudSat at the ground (Delanoë and Hogan, 2008b). 
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Figure 1. A global map for flight tracks of 11 NSF campaigns and the selected three satellite 
cloud phase products for comparisons. CALISPO, CloudSat and DARDAR are selected via 
(a-c) Method 1 and (d-f) Method 2, respectively. Aircraft flight tracks in (d-f) represent the 
entire campaigns, while (a-c) only show flight tracks collocated with satellite samples.  

1.3.2. Method 2: selecting satellite samples for each flight campaign 

Compared with Method 1, Method 2 uses a wider spatiotemporal window to select satellite 

data for individual campaigns, which allows more satellite samples to be evaluated in the 

comparisons. The temporal window of Method 2 starts 1 day before the first day of each 

campaign and ends 1 day after the last day of each campaign. A 3-D campaign domain is 
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defined by the minimum and maximum values of latitude and longitude for each campaign. 

Method 2 uses a spatial domain that extends 1 degree from each side of such campaign domain 

to select satellite observations surrounding each campaign. Another difference between the 

two methods is that Method 2 uses the entire vertical columns of satellite samples to conduct 

a statistical comparison with in-situ observations. Spatial distributions of satellite data sampled 

via Method 2 are illustrated in the global map in Fig. 1e-1f. 

Overall, Method 1 serves the purpose of choosing satellite samples that are relatively closer 

to the in-situ observations to reduce the impacts of spatial and temporal variabilities in cloud 

phase distributions on the comparison results. Method 2, on the other hand, serves the purpose 

of providing a larger sample size of satellite observations to be evaluated against in-situ 

observations, which can be further used to examine variabilities in different seasons and 

latitudinal and longitudinal bands. 

1.4 Results 

1.4.1 A Case Study Comparison Using One Research Flight 

A case study is conducted to illustrate the comparisons of cloud phase detected by in-situ 

aircraft observations and three satellite products (Fig. 2). This case is the Research Flight (RF) 

08 from the NSF START08 flight campaign on May 6, 2008. The START08 campaign 

targeted the physical and chemical processes in the extratropical upper troposphere (UT) and 

lower stratosphere (LS). The outbound part of the flight was sampled across a weakening squall 

in eastern Oklahoma and northern Texas based on radar observations from the National 

Weather Service. The inbound part of the flight followed an air mass with low stability. The 

final descent back to Broomfield, Colorado sampled a weak convection with virga.  
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Figure 2. A case study of NSF START08 research flight 8 that compares in-situ observations 
with three satellite products. (a) a map of the locations of in-situ and satellite observations. (b) 
dDist, arc distance between research aircraft and satellites. (c) Time differences, dTime. (d-f) 
Curtain plots of satellite-based cloud phases (in shades) and in-situ observations of liquid, 
mixed and ice phase (in markers). 
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The satellite data shown in this case study are selected in a similar way as Method 1 but do 

not apply any restrictions on dDist or altitudinal levels for illustrative purposes. Figure 2a 

illustrates the relative positions between in-situ and satellite observations in a 2-D bird view, 

while Fig. 2b and 2c illustrate the constantly changing dDist and dTime between observation 

platforms. The three satellite products show almost identical locations and times relative to the 

aircraft observations, indicating minimal impacts from spatial and temporal variations among 

these three satellite products on their evaluation results. 

This specific case study was selected based on the presence of a well-defined and stationary 

deep convection system that developed in the northwestern regions of Texas and Oklahoma. 

The deep convection structure exhibited minimal movement throughout the day, with a 

minimum dTime of approximately 6 hours. This extended period of minimal movement 

provided an ideal opportunity to thoroughly examine and analyze the consistency and 

agreement between in-situ and satellite observations. By focusing on a case with limited 

movement, valuable insights were gained into the intricacies of cloud dynamics and the 

performance and accuracy of satellite observations in capturing the complex behavior of the 

deep convection system. The vertical structure of cloud layers are investigated through curtain 

plots (Figure 2d-2f). The satellite products show an extensive, thick layer of ice clouds in the 

middle to upper troposphere, which may originate from the anvil outflow cirrus from the squall 

line. All three satellite products detected cloud layers most of the time when cloud 

hydrometeors were detected in aircraft observations. For the flight track segments closer to 

Broomfield, CO (i.e., latitudes beyond 40°N), the satellites were further away from the aircraft 

track as illustrated by larger dDist values in Fig.  2b. This may be the main reason that ice 
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crystals sampled around this area in the flight were not detected by the satellites. Comparing 

the in-cloud occurrences among three satellite products, CALIPSO shows the lowest cloud 

coverage, with mostly clear- sky conditions between 2–8 km. This could be due to the lidar 

signal attenuation through thicker ice cloud layers at higher altitudes. On the contrary, both 

CloudSat and DARDAR show extensive cloud coverage from the surface to 12 km in this case. 

The in-cloud occurrences in the CloudSat cloud phase product are also very similar to 

DARDAR, showing similar cloud fraction and location. 

When further examining the separation between ice and liquid phase, the ice and liquid 

hydrometeors observed by the research aircraft cloud probes are mostly captured correctly by 

three satellite products, with ice hydrometeors being detected as either ice or mixed phase, and 

liquid hydrometeors being detected as liquid or mixed phase by satellites. To further contrast 

the three satellites on their phase partitioning, DARDAR shows a distinct separation between 

ice and liquid phases around 3–4 km, which indicates a temperature-dependent threshold used 

in their cloud phase partitioning algorithm. CALIPSO and CloudSat have almost identical 

occurrences of the liquid phase, except for a few occasions when CALIPSO allows the liquid 

phase to occur up to 8 km (e.g., near 32° latitude), while CloudSat categorizes these points as 

a mixed phase. A unique feature of CloudSat product is the thick layers of mixed phase 

stretching from 2 km to 12 km. In comparison, the original CALIPSO data do not include 

mixed phase. The DARDAR cloud phase includes mixed phase but has very few occurrences. 

Both CloudSat and DARDAR detected deep convection and anvil structures in both 

outbound and inbound parts of the flight, but their identified cloud phases differ from each 

other. CloudSat identified two convective pillar clouds with anvil clouds on the side, likely 
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altostratus and/or cirrus clouds, as well as rainbands on the south of deep convection (26°N ~ 

27°N) categorized as liquid and mixed-phase clouds in an alternating pattern. A similar feature 

of alternating phases surrounding deep convection was reported previously (Hu et al., 2021). 

The two convective pillars are mostly categorized as mixed phase in CloudSat but are 

categorized as partly ice and partly liquid by DARDAR. For the location around 35°N - 37°N, 

DARDAR shows better agreement with the in-situ observations as they both capture the liquid 

phase, while CloudSat shows mixed phase. 

Overall, this case study illustrates that all three satellite products are able to capture the 

hydrometeors at similar locations as the in-situ observations, demonstrating the capability of 

using in-situ observations with relatively small variations in space and time for satellite 

validation. This case study also illustrates the key differences among the three satellite products 

in terms of in-cloud occurrences and cloud phase partition. The distinct feature of lower in-

cloud occurrences seen in CALIPSO is consistent with the physical limitation in the CALIOP 

LiDAR system, which is primarily used for detecting optically thin clouds (Winker et al., 2007; 

Zhang et al., 2010). On the other hand, since CPR RADAR is able to penetrate optically thick 

clouds (Im et al., 2005), CloudSat and DARDAR cloud phase products show higher in-cloud 

occurrences but with different phase partitioning. 

1.4.2. Vertical Distributions of Cloud Phase Frequencies using eleven NSF campaigns 

The cloud phase occurrence frequencies at various altitudes are examined in Fig. 3. In-

cloud frequency is calculated in each 500-m bin as the number of in-cloud samples (i.e., the 

sum of all cloud phase samples) divided by the total number of samples (i.e., clear-sky plus in- 

cloud conditions) in that bin. In addition, cloud phase frequency is calculated for each vertical 
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bin as the number of samples of a specific cloud phase is divided by the number of in-cloud 

samples. That is, cloud phase frequency represents the frequency of a cloud phase among all 

cloud phases, while the in-cloud frequency represents the frequency of in-cloud conditions 

among all-sky conditions. 

Method 2 (Fig. 2e, 2f, and 2g), which allows more satellite samples in wider spatiotemporal 

windows for comparisons, are compared with respective satellite samples selected by Method 

1 for their in-cloud frequencies. The fluctuations of in-cloud frequencies shown in Method 1 

are smoothed out when using larger samples in Method 2. In addition, Method 2 shows similar 

in-cloud frequencies as Method 1 below 10 km for CALIPSO, as well as similar profiles 

between 4–10 km for CloudSat and DARDAR. However, Method 2 shows lower in-cloud 

frequencies at 10–15 km for all three satellite products. This may reflect the flight designs of 

certain campaigns, such as the DC3 campaign targeting anvil outflow cirrus, and the PREDICT 

campaign targeting the upper levels of tropical cyclones, which leads to a slightly higher in-

cloud frequency in the UT/LS region around the flight track compared with other regions in 

the entire flight domain. This result indicates that in-cloud frequency comparisons are highly 

sensitive to the spatial and temporal proximity between different observation platforms. As a 

result, smaller spatiotemporal comparison windows are recommended for in-cloud frequency 

comparison. 

Cloud phase frequency distributions of all observations show increasing frequencies of the 

ice phase and decreasing frequencies of the liquid phase with increasing altitudes, consistent 

with the fundamental thermodynamic process of liquid hydrometeors converting to ice 
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Figure 3. Vertical profiles of occurrence frequencies of three cloud phases and in-cloud 
conditions. (a) In-situ observations from 11 flight campaigns. (b-d) Satellite-based cloud phase 
vertical distributions using Method 1. (e-g) Comparisons using Method 2. 
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hydrometeors with decreasing temperatures. Unlike the comparisons of in-cloud frequencies 

that show different results using Methods 1 and 2, both comparison methods show similar 

features of cloud phase frequency distributions, including the trend relative to altitude and the 

frequency range of each cloud phase. 

The altitudes where ice and liquid-containing phase (i.e., liquid plus mixed phase) have the 

same occurrence frequencies are at 3 km, 3.5 km, 4.5 km, and 3 km using method 1 sampling 

for in-situ observations, CALIPSO, CloudSat, and DARDAR, respectively. These altitudes 

also represent the locations where the dominant phase transitions from liquid dominant to ice 

dominant as altitudes increase. This vertical level can also be defined as where ice phase 

frequency equals 50%. The reason that CALIPSO and DARDAR show slightly lower altitudes 

of this transition level than in-situ observations is because these two satellite products have 

slightly higher frequencies of ice phase from the surface to 10 km than in-situ observations. 

The locations above which ice phase frequencies exceed 95% are 9.5 km, 8.5 km, 15 km, and 

4.5 km for the in-situ and three satellite datasets, respectively. In addition, the locations below 

which liquid phase frequencies exceed 95% are 1.5 km, 1 km, and 0.5 km, and not applicable 

to these datasets, respectively. The identification of near-surface cloud phases by CloudSat is 

influenced by surface cluttering, specifically the echoes produced by the CPR within the range 

of the Earth's surface to 1 km. This interference has an impact on the observation of low-level 

clouds and precipitation. This comparison shows that CALIPSO has the most similar 

distributions of ice and liquid phase compared with observations, even though CALIPSO does 

not include mixed phase in its cloud phase product. In comparison, DARDAR allows too many 
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ice phase clouds to occur at lower altitudes and therefore never allows liquid phase to exceed 

95% frequency. 

The frequencies of mixed phase from in-situ observations are relatively low (i.e., less than 

5%). DARDAR shows similar low frequencies of mixed phase less than 5%. CloudSat 

significantly overestimates mixed phase frequencies in all altitudes with frequency values 

ranging from 10% to 60%, consistent with the feature shown in the case study (Fig. 2e). this 

spurious mixed phase in CloudSat likely should have been categorized as all ice phase above 

8 km and as all liquid phase below 2 km, since the in-situ observations show >90% of ice and 

liquid phase at these two altitude ranges, respectively. The peak position of the in-situ observed 

mixed phase is around 5 km, which is close to the transition level from ice to liquid- containing 

phase. Interestingly, for CloudSat and DARDAR, the peak positions of mixed phase 

frequencies are also concurrent with their respective transition levels. This feature indicates 

that the locations where both ice and liquid phases occur frequently individually as separate 

cloud segments (near 50% frequency) also have the highest probability of generating and 

maintaining mixed phase cloud segments. 

1.4.3. Latitudinal Distributions of Ice Phase Frequency in a Global View 

The latitudinal distribution of ice phase frequency helps identify discrepancies between 

satellite and in-situ cloud phase observations. It can provide insights into the performance of 

satellites in different latitude ranges. The zonal average of ice phase occurrence frequency is 

compared between in-situ and satellite observations using comparison Method 1 (Fig. 4) and 

Method 2 (Fig. 5). The ice phase frequency is first calculated as the number of ice phase 

samples divided by the total number of in-cloud samples in a given bin, which has a vertical 
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resolution of 500 m and a horizontal resolution of 2.5° latitude. In addition, a 3 × 3 moving 

average is applied to each latitudinal by altitudinal bin to reduce the impacts of missing data 

in certain bins. Ice frequency lines (IceF) are defined as the lowest altitudes where ice phase 

frequency reaches a certain percentage within each 2.5° latitudinal bin, including frequencies 

of 10% (IceF10), 50% (IceF50), and 90% (IceF90). A moving average is also applied to three 

IceF lines after they are calculated from high-frequency data. IceF lines illustrate the transition 

between liquid- containing phase and the ice phase at various altitudes and latitudes. We define 

the altitudinal range between IceF10 and IceF90 as the mixing region. 

 

Figure 4. Latitudinal – altitudinal distributions of ice phase occurrence frequency using 
Method 1. Columns 1–3 represent comparisons for three respective satellite products – 
CALIPSO, CloudSat, and DARDAR, respectively. Rows 1, 2, and 3 show in-situ data, satellite 
data, and their differences (satellite minus in-situ). 
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Figure 5. Similar to Figure 4, except for using Method 2. Unlike Figure 4, in-situ 
observations in Figure 5 represent the entire flight campaigns 

Three different sub-sets of in-situ observations are shown in Fig. 4a, 4b, and 4c, which 

represent the in-situ observations that satisfy the spatiotemporal collocation criteria of Method 

1 and can be further compared with CALIPSO, CloudSat, and DARDAR, respectively. 

Similarly, the top row of Fig. 5 represents the sub-sets of in-situ observations that satisfy the 

spatiotemporal selection criteria of Method 2 for the respective satellite dataset. Note that even 

though Method 2 allows satellite products within the entire domain of the flight campaigns to 

be used for comparison, time gaps still exist in different satellite data and therefore not all 

aircraft observations are matched with all three satellite products, leading to the variations in 

the sub-sets of in-situ observations in the top row. 

Latitudinal dependence of ice phase frequency distribution is shown in the in-situ 

observations (Fig. 4a, 4b, and 4c). In the tropics (30°N–30°S), the mixing region is located 
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between 5 and 10 km, which is higher in altitude compared with the high-latitudinal mixing 

region. In the midlatitudes in the Northern Hemisphere (NH), the mixing region shows a sharp 

decrease in altitude by 5 km as latitude increases from 30°N to 60°N. Comparatively, the 

Southern Hemisphere (SH) midlatitudes show a smaller decline (by 2.5 km) in the mixing 

region height. The NH polar region (60°N–90°N) shows a relatively stable mixing region 

height at 0.5–5 km, while the SH polar region (60°S–90°S) shows a lower mixing region height 

around 2.5–7.5 km. Overall, significant hemispheric differences are shown by the in-situ 

observations, with the NH showing higher ice phase frequency than the SH at the same 

altitudes. One possible explanation for such hemispheric differences of ice phase frequencies 

is that the majority of flight campaigns in the SH took place in the Austral summer (e.g., 

SOCRATES and ORCAS were in Austral summer, with only a few flights from HIPPO in the 

Austral fall), while the flight campaigns in the NH occur in all seasons. The impacts of seasonal 

variability will be further discussed in Section 1.4.5. 

These hemispheric differences and latitudinal dependence are consistently shown in all 

three sub-sets of the in-situ observations, regardless of the small variations in their samples. 

One main difference among the three sub-sets of in-situ observations occurs around the 

equator, i.e., Figures 4b and 4c show a dip in the mixing region at the equator compared with 

Figure 4a. Another main difference is at the 60°S–75°S, where a wider mixing region is shown 

in Figures 4b and 4c compared with Figure 4a. 

Among all three satellite cloud phase products, CALIPSO (Fig. 4d) shows the most similar 

location and thickness of the mixing region at various latitudes compared with in-situ 

observations. At 45°S to 60°N, the thickness of the mixing region in CALIPSO is 2–3 km, 
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which is slightly thinner than that of in-situ observations (3 – 5 km). In the SH high latitudes 

(45°S to 90°S), the CALIPSO and in-situ observations have a similar thickness of mixing 

region, but CALIPSO shows a lower height of mixing region than in-situ observations, 

indicating that CALIPSO may have misrepresented supercooled liquid water as ice phase in 

this region. In the NH polar region (60°N to 90°N), both CALIPSO and CloudSat data have 

ice phase frequency at or closer to 1, while DARDAR allows a small amount of liquid phase 

below 1 km. This indicates that all three satellite products overestimate ice phase frequencies 

in the NH polar region by up to 50% from the surface to 5 km. Interestingly, the in-situ 

observations show a small increase in mixing region height at the NH and SH polar regions 

with increasing latitudes. Such an increase is captured by satellite data for the NH polar region 

but they overestimate this increasing trend. Such an increase could be caused by the reduction 

of available ice nucleating particles (INPs) in the polar regions, which may reduce the 

likelihood of ice formation compared with the midlatitudes.  

When comparing CloudSat and DARDAR data against in-situ observations, CloudSat 

shows a thicker mixing region (i.e., the thickness of 5–7 km), while DARDAR shows a thinner 

mixing region (thickness of 2–3 km) for most latitudes. The height of the mixing region is also 

higher in CloudSat (i.e., 5–12.5 km in altitude) and lower in DARDAR (4–7.5 km in altitude) 

compared with in-situ observations. CloudSat (Fig. 4e) allows liquid-containing phase, mostly 

likely mixed phase, to occur up to 12.5 km, much higher than the in-situ observed value. 

DARDAR (Fig. 4h) shows a sharp transition between the liquid-containing and ice phase 

(similar to the case study results). It only allows the liquid phase to frequently occur in a narrow 
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latitudinal range (45°N to 45°S), while in-situ observations frequently show liquid-containing 

phase in the SH polar region as well.  

The last row of Fig. 4 (Fig. 4e, 4h, and 4i) shows the satellite biases of ice phase frequency, 

calculated as frequencies of a certain satellite product minus the in-situ observations for the 

same latitudinal and altitudinal bin. CALIPSO shows a mixture of positive and negative biases 

in ice phase frequency, which underestimates ice phase frequency in the mid-troposphere 

around the mixing region and overestimates it above and below the mixing region. CloudSat 

shows the most negative biases except for the polar regions. DARDAR shows almost 

exclusively positive biases except near the surface at the NH polar region and near 5 km at the 

SH polar region.  

Figure 5 shows similar main features compared with Fig. 4, including similar location and 

thickness of mixing region for in-situ observations, a mixture of positive and negative biases 

in CALIPSO, significant negative biases in CloudSat, and positive biases in DARDAR. Similar 

to the smoothing effect of Method 2 shown in Fig. 3, Fig. 5 also shows a reduction of 

fluctuations in three IceF lines for each dataset when a larger sample size is analyzed. In 

addition, since Method 2 uses entire columns of samples instead of a specific altitude for 

comparison with aircraft data, Fig. 5 also shows more samples in the high altitudes in satellite 

data. In-situ observations (Fig. 4a, 4b, 4c) show a similar thickness from IceF10 to IceF50, 

compared with IceF50 to IceF90. This feature is also well represented by CALIPSO. CloudSat 

shows a similar range from IceF10 to IceF50, but a much thicker range from IceF50 to IceF90. 

This feature is most likely caused by an overestimation of mixed phase up to the high altitudes. 

DARDAR shows a similar IceF50 to IceF90, but a much thicker range from IceF10 to IceF50, 
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which indicates that the transition from liquid-dominant to a mixture of liquid and ice occurs 

very fast in DARDAR, similar to the sharp transition seen in Fig. 3.  

Overall, the similarity between Methods 1 and 2 for the main features seen in the in-situ 

observations and the main validation results for each satellite product demonstrates the 

statistical robustness of using these eleven NSF flights for the comparisons. 

1.4.4. Regional Variations of Ice Phase and In-Cloud Frequencies 

Average vertical profiles of ice phase frequencies (Fig. 6) and in-cloud frequencies (Fig. 

7) are examined for three regions: Southern Ocean (35°S – 70°S), tropics (5°S–30°N), and NH 

extratropics (30°N–90°N). In addition, the effects of selecting collocated satellite samples in 

various temporal windows are examined for the ice phase and in-cloud frequencies. 

Specifically, three ranges of dTime are analyzed using Method 1, including dTime within 3 

hrs, 6 hrs, and 12 hrs. Such analysis of the temporal window is similar to the method used by 

Diao et al. (2013). Similar to the frequency definition used in Fig. 3–5, ice phase frequency is 

the number of ice phase over the number of in-cloud samples, while in-cloud frequency is the 

number of in-cloud samples over the total number of all-sky conditions. Only the in-situ 

observations that have collocated satellite samples are shown in each panel, which leads to 

slight variation in the observed profiles depending on which satellite product is being 

evaluated. 

Based on in-situ observations, the tropics have lower ice phase frequency at each altitudinal 

bin compared with the Southern Ocean and NH extratropics. This is mainly due to the fact that 

temperatures at the tropics are higher than other latitudes for the same altitudes, while ice phase 

frequency is temperature dependent (i.e., lower ice phase frequency with higher temperature). 



 

31 

 

Figure 6. Regional variations of ice phase frequency vertical profiles. Columns 1 – 3 represent 
three latitudinal bands – the Southern Ocean, tropics, and NH extratropics. Solid lines denote 
ice phase frequency with different time window restrictions. Dotted lines denote the log10 
number of samples of in-cloud conditions within different time windows restrictions.  
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Figure 7. Similar to Figure 6, but for in-cloud frequency. Dotted lines denote the 
logarithmic-scale number of samples of all-sky conditions within different time windows 
restrictions.  
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The in-situ observations show a linear increase of ice phase frequency with increasing altitudes 

over the Southern Ocean (Fig. 6a). That is, ice phase frequency increases from 0 to 0.5 when 

altitudes increase from surface to 5 km, then from 0.5 to 1 when altitudes increase from 5 to 8 

km. In the tropics (Fig. 6b), such an increasing trend is faster when ice phase frequency 

increases from 0 to 0.5 within the range of 4 – 5.5 km, while the latter part of the increasing 

frequency from 0.5 to 1 occurs at a similar range (i.e., 5 – 11 km) to the in-situ observations. 

In the NH extratropics (Fig. 6c), the ice phase frequency only changes by 0.1 below 4 km or 

above 5.5 km but changes drastically from 0.25 to 0.75 from 4 to 5.5 km. These results indicate 

that the Southern Ocean has the thickest mixing region (IceF10 to IceF90 is between 1–7 km), 

indicating that supercooled liquid water does not rapidly turn into ice phase as altitude 

increases. This result is consistent with numerous observational studies that reported extensive 

distributions of supercooled liquid water over the Southern Ocean (e.g., Desai et al., 2023; 

Yang et al., 2021). The NH extratropics has the thinnest mixing region between 4 and 6 km, 

indicating that once ice crystal forms in the NH extratropics, supercooled liquid water turns 

into ice phase such as via Wegener-Bergeron-Findeisen process or riming. 

Three satellite data are able to capture the increasing ice phase frequencies with altitudes, 

as well as the lower ice phase frequencies in the tropics for the same altitudes compared with 

the other two regions. In the Southern Ocean, CALIPSO shows the most similar IceF50 at 4.5 

km as shown in the observations, while DARDAR shows much lower IceF50 at 2.5 km, 

consistent with the overestimation of ice phase frequency in DARDAR shown in Fig. 4i and 

5i. However, it is important to note that the limited availability of data from CloudSat and 

DARDAR during key NSF campaigns (HIPPO-3 and ORCAS) hinders their suitability for 



 

34 

comparison in the Southern Ocean. For NH extratropics, the CALIPSO data within 6 hrs of 

the aircraft observations show similar IceF50 near 4.5 km as the in-situ observations, while 

CloudSat and DARDAR both show IceF50 near 2.5 km. On the other hand, CALIPSO data 

within 12 hrs of the aircraft observations show IceF50 near 2.5 km as well, which indicates that 

the temporal window used to restrict satellite validation has a significant impact on the 

comparison result in the NH extratropics. Such impact of temporal variability is smaller in the 

Southern Ocean and tropics. Such larger temporal variabilities of ice phase frequencies in the 

NH extratropics may be caused by larger diurnal variations in temperature profiles over land 

than over the ocean. Since most of the research flights took place during the daytime, within 6 

hrs of the flights are mostly still in the daytime while within 12 hrs of the flights could be both 

daytime and nighttime. CloudSat also shows increases in ice phase frequencies for each 

altitudinal bin when the temporal window increases from within 6 hr to within 12 hr. DARDAR 

does not show such a strong effect from the temporal window, possibly because DARDAR 

already shows strong positive biases of ice phase and thus the diurnal variation is not as 

significant. 

In-cloud frequencies are compared among three regions in Fig. 7. A high-altitudinal cirrus 

cloud layer is seen in the in-situ observations, which is located at higher altitudes in the tropics 

due to the higher tropopause height. This is consistent with previous studies that reported high 

occurrence frequencies of cirrus clouds slightly below the thermal tropopause (e.g., Diao et al., 

2015). All three satellite data also capture the existence of such a cirrus layer. For the mid and 

lower troposphere, the in-cloud frequencies are around 25% to 40% in the in-situ observations, 

which is relatively similar to all three satellite data. Using different temporal windows 
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generally can change the in-cloud frequencies of satellite data by 0.1 to 0.2, which is not as 

significant as the impacts on ice phase frequencies as seen in the NH extratropics (Fig. 6c and 

6f). The most significant impacts of temporal windows occur at the cirrus level over the 

Southern Ocean (Fig. 7a, 7d, and 7g), with lower in-cloud frequency at the wider window 

(within 12 hrs), indicating higher cirrus occurrences at daytime than nighttime over this region.  

1.4.5. Seasonal and Longitudinal Variability of Ice Phase Frequency based on Satellite 
Data  

The previous analysis in Section 1.4.4 indicates variations in ice phase frequency with 

different geographical locations and temporal windows. To further examine the impacts of 

spatial and temporal variabilities of ice phase frequency, we compare satellite observations in 

four longitudinal ranges (Fig. 8) and four seasons (Fig. 9). Larger sample sizes are needed in 

order to examine these spatial and temporal variabilities; therefore we examine one-year 

samples from the three satellite products without applying the selection criteria. In-situ 

observations are not involved in this analysis since the average of all in-situ observations is 

already shown in Fig. 5. 

The four longitudinal ranges include global samples and three longitudinal bands: West 

Pacific (WP) (120˚E–180˚E), East Pacific (EP) (120˚W–180˚W), and America (20˚W–

120˚W). The global distributions of ice phase frequencies of all three satellites (Fig. 8a–8c) are 

similar to those shown in Fig. 4 and 5, even though the global distributions in Fig. 8 allows 

more regions to be examined compared with those selected by Method 2 (as illustrated in the 

map of Fig. 1b). Among three satellite data, CALIPSO (Fig. 8a) still shows the most similar 

mixing region compared with in-situ observations (Fig. 5a) In addition, the main biases in the 

satellite observations are similar to those shown in Fig. 4 and 5, including the lack of 
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Figure 8. Latitudinal-altitudinal view of ice phase frequency for three longitudinal bands: West 
Pacific, East Pacific, and Americas. Satellite data represent the entire year of 2010. Colored 
solid lines denote 10% (green), 50% (red), and 90% (blue) ice phase frequency. 

hemispheric differences, the overestimation (underestimation) of ice phase frequencies in 

DARDAR (CloudSat), as well as the overestimation (underestimation) of the mixing region 

thickness in CloudSat (DARDAR). This indicates that the previous validation results against 

the in-situ observations are statistically robust when using either Method 1 or Method 2 to 

restrict satellite data surrounding 1-Hz in-situ observations or flight campaigns. This also 

indicates that the differences between in-situ observations and satellite data cannot solely be 

attributed to their spatial mismatches. 
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Figure 9. Similar to Figure 8 but separated by four seasons using three satellite products in 
the entire year of 2010. 

In terms of seasonal variability (Fig. 9), CALIPSO and CloudSat show similar 

variabilities in ice phase frequencies in four seasons: December, January, and February 

(DJF); March, April, and May (MAM); June, July, and August (JJA); and September, 

October, and November (SON). That is, when NH is in boreal winter (DJF) or when SH is in 

austral winter (JJA), the winter hemisphere shows higher ice phase frequencies and lower 

IceF lines in the extratropics compared with other seasons for the same latitudinal/altitudinal 

bin. Such seasonal variability is shown most clearly in the extratropics CALIPSO and 

CloudSat, while the tropics have relatively constant ice phase frequencies among four 

seasons. DARDAR shows much smaller variations among the four seasons, with only 

slightly lower ice phase frequencies in the NH polar region in JJA compared with other 
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seasons. This lack of seasonal variability in DARDAR may be caused by its overestimation 

of the ice phase in general, which is consistent with the lack of sensitivity to temporal 

windows shown in Fig. 6i. Overall, the results from Fig. 8 and 9 indicate that the spatial 

variability in different longitudinal bands with different surface conditions (over land or 

ocean) have lower impacts than the seasonal variability. 

1.5. Discussion and Conclusion 

 This study aims to investigate the accuracy of cloud phase identification and categorization 

by satellite in comparison to in-situ direct detection. To achieve this, a merged in-situ dataset 

was used to visualize and quantify the differences and similarities in satellite products. As 

shown in Fig. 3, a case study was conducted to simulate a temporal and spatial averaging 

comparison of cloud phase distribution. The results indicate that CALIPSO effectively 

captures the dependence of ice and liquid phase distribution with height. However, DARDAR 

tends to identify mixed phase distribution accurately but detects ice and liquid phase cross at a 

lower altitude due to its dependence on temperature-related variables. Fig. 2e visualizes how 

CloudSat over-predicts mixed phase clouds throughout the entire column. Furthermore, the 

thickness of the CloudSat mixing layer can be seen in Fig. 5 c, Fig. 8, and Fig. 9. Despite this, 

the ice phase distributions from CloudSat compare well against in-situ observations, except for 

mixed phase clouds, which is similar to CALIPSO. These findings emphasize the importance 

of combining satellite data with in-situ observations to improve the accuracy of cloud phase 

identification and categorization. Moreover, this study contributes to a better understanding of 

the strengths and limitations of different satellite algorithms for cloud phase detection. 
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The study investigated the ability of satellite cloud phase identification and categorization 

in comparison with in-situ direct detection. The results of the investigation highlighted some 

limitations and biases in the current satellite detection algorithms. For instance, CALIPSO 

single instruments (LiDAR-only) showed the inability to penetrate optically thick clouds 

(depicted in Fig. 2d), showed the inability to identify the cloud phase from deep convection 

vertical structure (depicted in Fig. 2d). Also, the retrieval algorithm used by CloudSat (Fig. 2e) 

showed a bias towards mixed phases, leading to over-predictions of mixed phase clouds 

throughout the entire column. In comparing DARDAR (Fig. 2f) with in-situ, the results did not 

support this product well, and more investigation is needed to adjust satellite instruments and 

algorithms, leading to better satellite detection. The temporal and spatial averaging comparison 

method has more advantages than in-situ and satellite collocational comparison, but more in-

situ campaigns are required to verify how well satellites can detect cloud phases globally. The 

organized satellite-aircraft collocation verification can significantly improve the satellite 

algorithm, which can then be used on a global scale to improve the global circulation models. 

The methodologies used in this study were effective. Biases between different satellite 

instruments and algorithms must be considered when comparing minor details. In conclusion, 

satellite cloud phase detection, identification, and algorithm improvement are still needed, 

although satellites have the benefit of spatial coverage and the ability to identify large-scale 

features. The combination of LiDAR and RADAR on satellites has proved the ability to acquire 

atmospheric characteristics at multiple altitudes, providing valuable information for weather 

and climate research. Future improvements in satellite technology are anticipated and will be 

immensely helpful for weather satellite technology, climatology research, and weather model 
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development. In the future, two satellite missions, NASA EarthCARE and NASA AoS, will 

utilize multi-sensor setups to enhance cloud phase detection. EarthCARE includes instruments 

such as the Atmospheric Lidar for aerosol and thin cloud profiles, the Cloud Profiling Radar 

for vertical cloud profiles and Doppler measurements, the Multi-Spectral Imager for across-

track cloud and aerosol information, and the Broad-Band Radiometer for top-of-the-

atmosphere radiance and flux measurements. The NASA AoS combines multiple satellites 

with instruments including a single-frequency Doppler Radar for cloud and light precipitation 

motion, a microwave Radiometer for various atmospheric measurements, and a Backscatter 

Lidar for aerosol and cloud backscatter. These missions will benefit from the findings in this 

chapter to optimize their cloud phase detection capabilities. It is essential to continue research 

into optimizing satellite algorithms and improving detection capabilities to enhance the 

accuracy of satellite cloud phase products on a global scale. 
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2. A machine learning approach to examine key factors controlling cloud phase 
distributions based on in-situ and satellite observations 

2.1. Introduction 

 Cloud phase detection is an important aspect of atmospheric research, as it provides 

valuable information about the composition and behavior of clouds. In-situ aircraft 

observations and satellite remote detection are two common methods for gathering this data. 

However, there can be discrepancies between the results obtained from these two methods. 

Machine learning models provide a powerful tool for evaluating the similarity between these 

two sources of data. The use of  machine learning models is crucial in evaluating the similarity 

between in-situ aircraft observations and satellite remote detection of cloud phases. This paper 

utilizes data from NASA CALIPSO, NASA CloudSat, and DARDAR satellite products, as 

well as 11 NSF EOL aircraft observation campaigns. By leveraging the power of machine 

learning, a deeper understanding of the relationship between these two methods of cloud phase 

detection can be obtained.  

Recent studies using machine learning have significantly contributed to atmospheric 

research and the improvement of satellite observations. Various studies have demonstrated the 

effectiveness and necessity of incorporating machine learning techniques for satellite 

validation and enhancement. Kuma et al. (2023) utilized satellite observations from CERES 

along with ground-based data from WMO stations to train an artificial neural network (ANN) 

for estimating the cloud-type (i.e., cirrus, cirrostratus, cirrocumulus, altocumulus, 

stratocumulus, etc.) occurrence probability. The ANN showed promising performance in 

reproducing observed cloud types, highlighting its potential in accurately characterizing cloud 

phenomena. Kim et al. (2020) developed a machine learning model that used spectral 
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information from Meteosat-9 SEVIRI data and satellite viewing geometry as predictors, with 

CloudNet LWP data as the target. By employing Gradient Boosting Regression Trees 

(GBRTs), the model achieved a better agreement with independent CloudNet LWP 

observations compared to traditional physics-based approaches. This result underscores the 

potential of machine learning methods in advancing retrieval techniques for cloud properties. 

Rolf et al. (2021) employed daytime satellite imagery to train MOSAIKS, a machine-learning 

model that demonstrated competitive performance in various tasks. The model's ability to 

generalize out-of-sample across space and outperform ground truth interpolation in multiple 

tasks highlights its potential in capturing complex atmospheric patterns and features. While 

these studies provide valuable insights into the effectiveness of machine learning in satellite 

validation and improvement, it is worth noting that most of them primarily focus on 2-D 

satellite imagery to evaluate horizontal atmospheric features. In our current research, we aim 

to expand on these findings by exploring the advantages and limitations of utilizing vertical 

down-looking scanning satellites. To achieve this, we will compare and analyze the data 

obtained from these satellites with in-situ airborne observations. By leveraging different 

approaches and datasets, we hope to gain a comprehensive understanding of the capabilities 

and limitations of satellite-based observations for studying the atmosphere and improve our 

ability to accurately characterize and predict cloud phenomena. 

The existing research on satellite cloud phase detection validation often overlooks the 

important correlation and biases caused by thermodynamic, dynamic conditions, and aerosol 

effects when compared with in-situ airborne observations. To address this gap, future studies 

should focus on analyzing these relationships more comprehensively. Noh et al. (2011) 
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highlight the challenge of assigning the proper microphysical phase in CloudSat retrievals. 

They propose potential solutions, such as utilizing CALIPSO data to identify supercooled 

liquid layers at cloud tops or estimating liquid water content based on temperature profiles or 

adiabatic liquid water content profiles. These approaches could help improve the accuracy of 

cloud phase determination. Coopman et al. (2020) emphasize the strong relationship between 

ice crystal size, cloud droplet size, and cloud top height (CTH). They also emphasize the impact 

of aerosols on glaciation temperature (Tg). They suggest that leveraging machine learning 

techniques could enhance global models by considering these aerosol effects. Additionally, 

incorporating reanalysis data on aerosol information through collocation would be interesting 

for future research. In our study, we aim to address these challenges by integrating machine 

learning algorithms with in-situ observed thermodynamics, dynamic conditions, and aerosol 

data. This integration will enable us to assess the correlation between in-situ cloud phase 

observations and satellite detections more comprehensively. By incorporating these additional 

factors, we can improve our understanding of cloud phase identification and enhance the 

accuracy of satellite-based cloud observations. 

In this paper, a detailed analysis of the cloud phase detection similarity between in-situ 

aircraft observations and satellite remote detection using fine-tree machine learning models is 

presented. The results demonstrate the effectiveness of using machine learning to evaluate the 

similarity between these two methods of cloud phase detection. One key finding of the analysis 

is that clouds behave very differently at different temperatures and RHi ranges. In particular, 

the temperature range between -40°C to 0°C is the most interesting to evaluate the difference 

in satellite and in-situ cloud phase detection. The machine learning model provides an aspect 
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that describes how temperature range, relative humidity with respect to ice, and vertical 

velocity affect the performance of cloud phase detection.  

2.2. Data 

2.2.1 In-situ Observation 

A global in-situ dataset is created by combining 11 individual NSF campaigns, including 

START08 (Pan et al., 2010), HIPPO (Wofsy, 2011), PREDICT (Montgomery et al., 2012), 

DC3 (Barth et al., 2015), TORERO (Volkamer et al., 2015), CONTRAST (Pan et al., 2017), 

WINTER  (Thornton et al., 2014), CSET (Albrecht et al., 2019), ORCAS (Stephens et al., 

2018), SOCRATES (McFarquhar et al., 2021), and OTREC (Fuchs-Stone et al., 2020). This 

extensive dataset covers a vast longitudinal range, spanning from 120°E to 40°W, and a wide 

latitudinal range from 75°S to 90°N. This expansive coverage provides us with a unique 

opportunity to analyze and understand the global distribution of cloud phases across various 

regions and climatic zones. By encompassing diverse geographical locations and weather 

patterns, this dataset offers valuable insights into the complex dynamics of cloud formation 

and behavior on a global scale. 

The cloud phase data utilized in this study were obtained from the works of D’Alessandro 

et al. (2019) and Yang et al. (2021). These studies employed a cloud phase identification 

method that processes high-resolution, 1-Hz in-situ data captured by a range of cloud probes, 

including the Cloud Droplet Probe (CDP), the Fast-2 Dimensional Cloud (Fast-2DC) Probe, 

and the Two Dimension Stereo (2DS) Probe. Each of these probes is designed to detect cloud 

hydrometeors within specific size ranges. The CDP captures particles ranging from 2 to 50 μm 

in size, the Fast-2DC Probe covers the range of 62.5 to 3200 μm, and the 2DS Probe detects 
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particles within the size range of 40 to 5000 μm. By utilizing these advanced cloud probes, the 

cloud phase identification method employed in this study ensures accurate and comprehensive 

characterization of cloud phase properties at different size scales. 

Onboard the in-situ airborne observations, various measurements are conducted to gather 

important data. The temperature data is obtained using the Rosemount temperature probe. The 

RHi is calculated using the Vertical Cavity Surface Emitting Laser (VCSEL) hygrometer, and 

it is derived using Equation 11 from Murphy and Koop (2005). The vertical wind speed is 

directly measured as an in-situ observation. The concentrations of aerosol particles between 

55 to 1000 nm, known as Na100 and Na500, are detected using the in-situ Ultra-High 

Sensitivity Aerosol Spectrometer (UHSAS). These in-situ measurements provide valuable 

information for further analysis and comparison. 

2.2.2 Satellite Observations 

For the collocation between in-situ observations and satellite data, three specific satellite 

cloud phase products have been selected: NASA CALIPSO Vertical Feature Mask (VFM), 

NASA CloudSat 2B-CLDCLASS-LIDAR, and Laboratoire Atmosphères, Milieux, 

Observations Spatiales DARDAR-CLOUD. These products are part of the Afternoon 

Constellation (A-Train) constellation, with CALIPSO and CloudSat later transitioning to the 

C-Train. 

The CALIPSO VFM utilizes LiDAR as its primary instrument for categorizing the data 

based on the LiDAR backscatter and linear depolarization ratio. The VFM provides 

information on various features, including aerosol types (e.g., smoke, marine, volcanic ash), 

cloud types (e.g., cirrus, deep convection), and cloud thermodynamic phase (Vaughan et al., 
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2004). Both CloudSat 2B-CLDCLASS-LIDAR and DARDAR-CLOUD combine data from 

the radar onboard NASA CloudSat and the LiDAR from CALIPSO. This combination 

leverages the strengths of both sensor types, as LiDAR is better at detecting optically thin 

clouds while radar excels at observing optically thick clouds. The main difference between 

CloudSat and DARDAR data lies in their algorithm development. The CloudSat algorithm is 

based on Wang and Sassen (2001), while the DARDAR algorithm, known as "Varcloud," is 

based on Delanoë and Hogan (2008b).  

By utilizing these three satellite products, it becomes possible to identify and quantify the 

performance of different algorithm and instrumentation combinations, providing a 

comprehensive and quantitative representation of cloud phase identification from satellite 

observations. 

2.3. Machine Learning Setup 

In this study, a fit ensemble of learners for classification was employed, utilizing decision 

tree learners and discriminant analysis classifiers. The goal was to create a predictive 

classification ensemble by incorporating all available predictor variables in the dataset. 

Additionally, a reduced set of predictors was used to train another ensemble, enabling the 

assessment of variable selection's impact on predictive accuracies. The process flow chart is 

shown in Fig. 10. The decision to use decision tree machine learning over other methods like 

neural networks, K-nearest neighbors (KNN), and others was based on key factors. Decision 

trees provide interpretability, handle different data types efficiently, and require minimal 

preprocessing. In contrast, neural networks lack interpretability and can be computationally 

expensive, while KNN may struggle with high-dimensional data and require additional steps. 
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Other methods may have limitations in handling nonlinear relationships, outliers, or missing 

values. Considering these factors, decision trees were favored for their interpretability, 

efficiency, and versatility in handling various data complexities, making them a valuable 

choice for accurate cloud phase detection. 

 

Figure 10. Flow chart of the Machine Learning process. Data preparation split the full dataset 
into a 30% test set and a 70% train set. Before the fine tree model ensemble training predictor(s) 
is selected. After model training, the model is evaluated using the test set and outputs a 
prediction dataset. 

For the construction of decision tree ensembles, a uniformly specified algorithm was 

utilized to determine optimal splits on categorical predictors, select the split criterion, and 

determine the number of predictors used for each split (Gordon et al., 1984; Loh & Shih, 1997). 

Random Forest, a popular ensemble model, was employed where all individual decision tree 

models were generated simultaneously during training. During prediction, each tree 
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independently produced its own prediction, and the final prediction was determined through a 

majority conclusion among the trees. This approach leveraged the ensemble agreement of the 

trees to enhance accuracy, reduce overfitting, and provide more robust predictions. The 

implementation of "surrogate" decision splits was another aspect of the study. Surrogate splits 

allowed decision trees to incorporate up to 10 surrogate splits at each branch node, acting as 

backups for cases where original splits couldn't be effectively used, such as with missing values 

or weak features. Surrogate splits aimed to capture similar patterns or relationships as the 

original splits, improving model robustness and accuracy in datasets with missing values. 

The decision tree ensembles were fine tree models with a specified "MaxNumSplits" 

parameter set to 100, determining the maximum number of decision splits or branch nodes per 

tree. This parameter controlled the depth of the trees, with lower values leading to shallower 

and simpler models and higher values allowing for more complex patterns to be captured. To 

address the data sample imbalance between clear sky and in-cloud conditions, the "RUSBoost" 

random undersampling boosting method was employed (Seiffert et al., 2008). RUSBoost 

combined random undersampling of the majority class with boosting techniques to create a 

strong predictive model. RUSBoost helped handle class imbalance and improved the model's 

ability to accurately predict both majority and minority classes. The decision tree template was 

chosen as the base learner for the ensemble, and the "NumLearningCycles" parameter 

determined the number of iterations of training. Increasing the value of "NumLearningCycles" 

added more weak learners to the ensemble, refining the model's predictions. The value of 100 

was selected for "NumLearningCycles" to strike a balance between predictive power and 

computational resources. This approach of utilizing ensembles, surrogate splits, and RUSBoost 
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demonstrated the aim of improving predictive performance and addressing challenges such as 

missing values and class imbalance in the dataset. 

In the validation process, the test set includes both the predictors (features) and the true 

answers (cloud phase labels). The machine learning model uses the predictors from the test set 

to make predictions on the cloud phase. After the predictions are made, the true answers from 

the test set are compared with the predicted values to assess the accuracy and performance of 

the model. This comparison allows for evaluating how well the machine learning model aligns 

with the actual cloud phase observations in the test set. By comparing the predicted values with 

the true answers, the model's performance can be assessed and validated against the known 

cloud phase data in the test set. 

2.4. Results 

2.4.1 Thermodynamic and Dynamic Distribution of Ice Phase Occurrence and In-Cloud 
Frequency 

2.4.1.1 Temperature and RHi Distribution 

The evaluation of in-cloudF provides crucial insights into the distribution and occurrence 

of clouds at different temperatures and RHi ranges. This metric is derived by dividing the cloud 

occurrence (including liquid, mixed, and ice phase clouds) by the total sky conditions detected 

through in-situ observations. Similarly, the iceF offers a measure of the relationship between 

temperature, RHi, and satellite observations. The iceF is calculated by dividing the occurrence 

of ice phase clouds by the total number of in-cloud detections. 

Analyzing the in-cloudF from CALIPSO (Fig. 11d) reveals a striking similarity to the in-

situ observations (Fig. 11a), indicating the accuracy of CALIPSO in capturing cloud 

occurrences. However, CALIPSO exhibits slightly higher cloud occurrences below -20°C and 
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above 100% RHi (Fig. 11g), suggesting possible biases in its cloud detection algorithm. Both 

CloudSat and DARDAR (Fig. 11g and 11j) exhibit comparable distributions of in-cloudF, 

implying consistent patterns of cloud occurrence. CloudSat demonstrates a modest dependence 

on temperature and RHi, with higher cloud occurrences observed at colder temperatures and 

higher RHi values. DARDAR shares similar characteristics with CloudSat but displays cloud 

occurrences at multiple locations above -20°C, without any apparent relationship with 

temperature and RHi. 

The number of samples shown in Fig 11 (c, f, I, and l) represents the available data for 

comparison. However, the number of samples from the satellite data is limited due to sampling 

restrictions. The in-situ composite dataset provides comprehensive data below 100% RHi 

across all temperature. However, there is a decrease in data between -20°C to -40°C and 50% 

to 100% RHi. Additionally, there are fewer data points above 100% RHi. In all three satellite 

products, there is a higher availability of data between 0°C to -20°C and -40°C to -70°C for 

this evaluation. 

Examining the iceF, CALIPSO's observations (Fig. 11e) exhibit a comparable distribution 

to the in-situ data (Fig. 11b), confirming its ability to detect the presence of the ice phase. The 

temperature dependence of the ice phase is significant, with no ice phase detection above 0°C 

and a complete ice phase below -40°C. In the temperature range between 0°C and -40°C, 

CALIPSO's iceF demonstrates a strong correlation with RHi. Similarly, DARDAR (Fig. 11k) 

exhibits temperature dependence, although it shows ice occurrence even above 0°C. The iceF 

of CloudSat (Fig. 11h) demonstrates a pronounced reliance on the temperature within the range 

of 0°C to -40°C. However, below -40°C, the iceF does not reach 100% for CloudSat, 
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suggesting potential issues with its cloud phase identification algorithm, leading to an over-

prediction of mixed-phase clouds. 

 

Figure 11. Distribution of RHi at different temperatures from (a, d, g, and j) in-cloudF, (b, e, 
h, and k) iceF, and (c, f, i, and l) the number of samples. The dashed-dotted line indicates the 
homogenous freezing threshold for 0.5 µm aerosols based on Koop et al. (2000). The dotted 
line shows the liquid saturation line calculated based on saturation vapor pressure with respect 
to liquid (Murphy and Koop, 2005). 

2.4.1.2 Temperature and Vertical Velocity 
Distribution 

Similarly to the previous section, this section examines the distribution of temperature and 

w and its impact on cloud occurrence and ice phase frequency. 
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The in-cloudF observed in-situ (Fig. 12a) reveals a higher cloud occurrence at lower 

temperatures and higher vertical velocities, both upward and downward. This pattern is also 

evident in the three satellite cloud phase products (Fig. 12d, 12g, and 12j). Notably, DARDAR 

(Fig. 12j) detects more clouds above -20°C compared to the other observations. 

The iceF exhibited by the in-situ measurements, CALIPSO, and DARDAR (Fig. 12b, 12e, 

and 12k) shows a dependence on temperature rather than vertical velocity. However, CloudSat 

(Fig. 12h) displays a lower ice phase frequency below -40°C, consistent with the distribution 

observed in the previous figure. Additionally, an intriguing pattern emerges between -20°C 

and -40°C for CloudSat, where the iceF decreases to 50% at a vertical velocity of ±1 m/s. 

These findings shed light on the relationship between temperature, vertical velocity, and 

cloud properties. The observed higher cloud occurrence at lower temperatures and increased 

vertical velocities suggest a possible influence of atmospheric dynamics on cloud formation 

and behavior. The temperature-dependent ice phase frequency highlights the sensitivity of ice 

formation to thermal conditions. The unique patterns exhibited by CloudSat, such as the lower 

iceF below -40°C and the notable decrease in iceF at specific vertical velocities, warrant further 

investigation into the underlying mechanisms and potential biases in cloud phase identification 

algorithms. The number of samples depicted in Fig 12 (c, f, I, and l) reflects the available data 
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Figure 12. Similar to Figure 11, but for the Distribution of w at different temperatures from 
(a, d, g, and j) in-cloudF, (b, e, h, and k) iceF, and (c, f, i, and l) the number of samples. 

for comparison, similar to Figure 11. In-situ and satellite observations all reveal a substantial 

amount of data sampled where vertical velocity is between -1 m/s and 1 m/s., as well as 

increased sampling between 0°C to -20°C and -40°C to -70°C temperature ranges. 

The evaluation of in-cloudF and iceF provides valuable insights into the distribution and 

occurrence of clouds and their relation to temperature, RHi, and w. The comparison of satellite 

observations, such as CALIPSO, CloudSat, and DARDAR, with in-situ measurements reveals 
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similarities and differences in cloud occurrence and ice phase detection. CALIPSO exhibits 

accurate cloud occurrence and ice phase detection, although it shows slight biases at specific 

temperatures and RHi ranges. CloudSat and DARDAR demonstrate consistent patterns of 

cloud occurrence, with CloudSat displaying temperature and RHi dependence. However, 

potential issues with cloud phase identification are observed, particularly in over-predicting 

mixed-phase clouds. The iceF analysis confirms temperature dependence, with CALIPSO 

showing significant sensitivity to temperature and RHi, while DARDAR and CloudSat exhibit 

similar temperature patterns but with some deviations. The examination of vertical velocity 

reveals higher cloud occurrence at lower temperatures and increased vertical velocities. These 

findings emphasize the importance of evaluating satellite algorithms and contribute to 

improving satellite-based cloud observations and enhancing our understanding of cloud 

processes in the atmosphere. 

2.4.2 Cloud phase probability density function of in-situ temperature and RHi 

The cloud phases probability density function (PDF) (Fig. 13) represents the normalized 

distribution of the total number of samples in different temperature and RHi ranges, based on 

in-situ observations of clear sky, liquid phase, mixed phase, and ice phase. The PDF for the in-

situ clear sky reveals that all three satellite products exhibit consistency with the in-situ 

observations in terms of temperature distribution. However, when considering the PDF-RHi 

distribution, all satellites display higher PDF values than the in-situ clear sky (Fig. 13a), 

indicating a higher frequency of cloudy conditions as perceived by the satellites.  

For the liquid phase PDF (Fig.13b and 13f), CALIPSO shows the most similar trend to the 

in-situ observations, while CloudSat exhibits a sharp decrease outside the 0°C to 10°C range, 
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and DARDAR shows an over-identification between 0°C and -20°C. In terms of the PDF-RHi 

distribution, all three satellite products display a peak at around 80% RHi, indicating a 

consistent identification of in-cloud conditions. Moreover, the higher PDF values below 100% 

RHi suggest that the satellites project a more cloud-prone atmosphere compared to the in-situ 

observations. In the mixed phase distribution, both CloudSat and DARDAR show an over-

detection of the mixed phase when compared to the in-situ observations in the temperature 

distribution. The PDF-RHi distributions reveal that both satellite products tend to over-identify 

the mixed phase below 100% RHi by orders of magnitude. 

The PDF for the ice phase exhibits nearly perfect alignment with the in-situ observations. 

CALIPSO and CloudSat detect fewer ice phase occurrences than the in-situ observations at 

temperatures above -20°C, indicating a perception that the ice phase is less frequent at warmer 

temperatures. However, the DARDAR algorithm projects a higher ice phase PDF than the in-

situ observations at temperatures above -20°C. The satellite products consistently display PDF-

RHi distributions with lower PDF values than the in-situ observations above 70% RHi, and 

higher PDF values below 70% RHi. 

The distribution of the number of samples for PDF for each cloud phase based on in-situ 

and satellite observations (Fig. 14). In clear sky conditions, the in-situ data exhibit the highest 

number of samples across all temperature ranges and RHi ranges, followed by CALIPSO, 

CloudSat, and DARDAR. However, for temperatures below -40°C and RHi above 125%, all 

three satellite datasets provide similar amounts of data. Regarding the liquid phase, in-situ 

observations have the most data above 0°C and RHi greater than 50%, while CALIPSO and 

CloudSat have the most data at RHi below 50%. CloudSat dominates the mixed phase  
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Figure 13. cloud phase probability density function with respect to  (a - d) temperature and 
(e - h) RHi. 
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category. Finally, the ice phase is predominantly represented by the in-situ observations in all 

temperature ranges and for RHi values above 25%. 

Overall, the PDF analysis provides a clearer understanding of how each satellite platform 

performs in distinguishing clear sky from the three cloud phases. In conclusion, the satellites 

tend to identify more clouds in the RHi range below 70% and less cloud detection in the RHi 

range above 70%, as compared to the PDF derived from the in-situ observations. 
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Figure 14. cloud phase probability density function number of samples with respect to (a - d) 
temperature and (e - h) RHi. 
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2.4.3 Linear regression fit of ice phase and in-cloud frequency at in-situ temperature 
and RHi 

2.4.3.1 Ice Phase Occurrence Frequency 

Ice phase frequencies per temperature bin provide valuable insights into the distribution 

and comparison of ice phase between satellite and in-situ aircraft measurements. By dividing 

the dataset into distinct temperature intervals, we can analyze the occurrence of supercooled 

liquid and ice phases within the mixed phase temperature range. The evaluation involves 

comparing machine learning models (T model, T+RHi model, and T+RHi+w model) with in-

situ and satellite observations. 

Figure 15 presents the results for each temperature range. Observations indicate a 

decreasing trend in IceF with increasing temperature, with CloudSat encountering challenges 

below -40°C. The machine learning models capture this trend to varying degrees. The T+RHi 

model shows an increase in IceF for in-situ observations between -40°C to -30°C, while the 

satellites consistently exhibit a decrease in IceF with higher temperatures. The T+RHi+w 

model follows a similar trend to the T+RHi model. 

Below -40°C, only the observation from CloudSat shows ice phase frequencies below 

100%, which is well captured by the machine learning models. CALIPSO and DARDAR 

exhibit a decrease in frequencies closer to -40°C. Between -40°C and -30°C, observations 

maintain IceF above 80% for all platforms, whereas the models struggle to predict high ice 

phase frequencies. The best agreement occurs in the temperature range of -20°C to -10°C, 

where the models reasonably represent the observations. 

In summary, machine learning models effectively identify broader trends in ice phase 
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Figure 15. The iceF with respect to temperature. Column 1 shows the observation distribution, 
column 2 is the T model, column 3 is the T+RHi model, and column 4 shows the T+RHi+w 
model. Row a shows the IceF distribution in full temperature range, row b shows temperature 
range between -80°C to -40°C, row c is -40°C to -30°C, row d is -30°C to -20°C, row e is -
20°C to -10°C, row f is -10°C to 0°C, and row g shows temperature range above 0°C. 

frequencies across a wide temperature range. However, capturing the similarity of ice phase 

frequencies between specific temperature ranges presents a greater challenge. The T+RHi 

model performs well in predicting ice phase frequencies, while the T+RHi+w model shows 
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limited improvement, and the T model's predictions are less organized. Figure 16 reveals that 

the T model performs well in relation to observed RHi, while the T+RHi and T+RHi+w models 

struggle to capture the relationship between ice phase distribution and RHi.  

 

Figure 16. Similar to Figure 15 but The iceF with respect to RHi.  
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2.4.3.2 In-Cloud Occurrence Frequency 

The comparison between in-cloudF observations and ML predictions in Fig. 17 and Fig. 

18 focuses on evaluating the performance of ML models across different temperature ranges. 

Overall, there are good agreements between satellite platforms and in-situ observations, 

indicating the effectiveness of ML models in capturing cloud occurrence patterns. However, 

DARDAR shows higher in-cloudF than the in-situ observations in the temperature range of  

-20°C to 20°C, suggesting the cloud identification algorithm that require further investigation. 

The limited performance of the T model across all temperature ranges can be attributed to 

its sole reliance on temperature as a predictor. Cloud formation involves multiple factors 

beyond temperature, such as relative humidity with respect to ice and atmospheric vertical 

velocity. The omission of these factors restricts the T model's ability to accurately represent 

cloud occurrence. The T+RHi model improves the prediction by incorporating relative 

humidity but still overpredicts cloud occurrence in all temperature ranges. The T+RHi+w 

model does not show significant improvement compared to the T+RHi model. 

Figure 18 illustrates that the T model is not aware of the relationship between cloud occurrence 

and relative humidity, and overpredicts cloud occurrence to almost 100% across all 

temperature ranges. Both the T+RHi model and T+RHi+w model struggle to understand that 

low relative humidity should not result in high in-cloudF, leading to increased randomness in 

their predictions. In contrast, the T+RHi model and T+RHi+w model consistently perform well 

and mirror each other in most cases. By incorporating relative humidity alongside temperature, 

these models enhance their predictive capabilities. Considering multiple variables provides a 
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more comprehensive understanding of cloud formation conditions and improves the accuracy 

of cloud occurrence predictions. 

 

Figure 17. Similar to Figure 15, but for the in-cloudF with respect to temperature. 
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Figure 18. Similar to Figure 15, but for the in-cloudF with respect to RHi.  

This comparison emphasizes the importance of incorporating multiple variables when 

developing ML models for cloud prediction. The temperature should be complemented by 

other relevant parameters like relative humidity to capture the complex nature of cloud 

formation. These findings highlight the need for comprehensive approaches to modeling cloud 
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occurrence, leading to more accurate predictions and a deeper understanding of the interplay 

between temperature, humidity, and cloud dynamics. 

2.4.4 Using ML to evaluate each variable importance to the cloud condition  

2.4.4.1 In-cloud and clear sky condition evaluation 

This section focuses on comparing the reliance of different observation platforms by 

separating cloud phase data into the clear sky and in-cloud conditions (Fig. 19). By utilizing 

single predictor models, the dependence of each platform on specific variables can be 

evaluated, and by combining T, RHi, and w into a single model, the ML model can leverage 

the strengths of each predictor. The last two rows (Fig. 19f and 19g) use a Na500 subset that 

only includes when the cloud phase detection has a correlated Na500 observation. The inclusion 

of total aerosol number concentration (Na) is important since aerosols are present in both clear 

sky and in-cloud conditions, allowing for the examination of differences caused by Na. 

The distribution of clear sky and in-cloud conditions is shown in the top row (Fig. 19 row a), 

with all platforms exhibiting a similar ratio of cloud occurrence. In the single predictor ML 

setup, the RHi model appears to be the best predictor for in-cloud or clear sky conditions for 

in-situ observations. For CALIPSO and CloudSat, RHi is better at predicting clear sky 

conditions, while the T model performs better at predicting in-cloud conditions. DARDAR 

shows that the T model and w model are similar in predicting clear sky conditions, and the T 

model and RHi model show similar predictability for in-cloud conditions. 

The T+RHi+w model combines the advantages of each predictor. Clear sky predictions 

from in-situ observations are mainly contributed by the RHi model, while the improvement in  
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Figure 19. The observed in-cloud and clear sky occurrence in comparison with machine 
learning predictions. Column 1 shows in-situ, column 2 shows CALIPSO, column 3 shows 
CloudSat, and column 4 shows DARDAR. Model predictors are shown on the left side of each 
row. In row a, blue bar and orange bar indicated the clear sky or in-cloud conditions, 
accordingly. In ML, the bright green indicates correct prediction, the orange indicates the 
prediction of in-cloud, and blue indicates the prediction of clear sky. 

in-cloud predictions is likely due to the combination of T and RHi. All satellite predictions 

show improvement, with clear sky predictions increasing from around 70% to above 80% 

using the combined predictors. Similarly, for in-cloud conditions, improvements are observed 

for both in-situ and all three satellite products compared to the single predictor models. 
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The inclusion of Na500 data in the T+RHi+w+Na100 model leads to further improvements 

in both clear sky and in-cloud conditions for in-situ and all satellites. DARDAR benefits the 

most from incorporating Na500 data, along with the inclusion of Na100 as a predictor. 

Interestingly, all the in-cloud predictions using the T+RHi+w+Na500 model are worse than 

those of the T+RHi+w+Na100 model, while clear sky predictions remain the same. 

Overall, this analysis demonstrates the varying reliance of different observation platforms 

on specific predictors and highlights the improvements achieved by combining multiple 

variables in ML models. The inclusion of aerosol concentration as a predictor shows the 

potential for enhancing predictions in certain conditions. 

2.4.4.2 Evaluating four sky conditions (Clear sky, Liquid, Mixed, and Ice phase) 

This evaluation expands on the previous section by analyzing the distribution of cloud 

phases in addition to the overall appearance of clouds. The statistics of cloud phase distribution 

are shown in the top row (Fig. 20 row a), with the clear sky being the dominant phase across 

all platforms, followed by ice phase clouds. Liquid phase clouds are the third most common 

phase in in-situ observations and DARDAR, while mixed phase clouds detected by CloudSat 

surpass the frequency of liquid phase clouds. 

The predictions from the T model highlight the high-temperature dependence of ice phases 

in in-situ observations, CALIPSO, and CloudSat, with relatively accurate predictions. 

However, DARDAR exhibits lower accuracy, achieving only around 50% accuracy in 

predicting ice phase clouds. Liquid phase clouds are predicted well by CALIPSO, CloudSat, 

and DARDAR. Clear sky predictions perform poorly across all platforms. The clear sky 

predictions from in-situ observations heavily rely on the RHi predictor. CALIPSO and  
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Figure 20. Similar to Fig. 19, but for clear sky, liquid, mixed, and ice phase occurrence in 
comparison with machine learning predictions. 

CloudSat show slightly better clear sky predictions using RHi compared to T and w predictors. 

The w model demonstrates an inability to accurately identify cloud phases. 

The T+RHi+w model shows significant improvements compared to the single predictor 

models for in-situ observations, CloudSat, and DARDAR across all cloud conditions. 

However, CALIPSO's clear sky prediction accuracy decreases compared to the RHi model. 

When incorporating the Na subset in the ML model for in-situ observations, the accuracy 

of liquid phase predictions decreases compared to the T+RHi+w model. Similarly, the 

accuracy of mixed phase and ice phase predictions for DARDAR also decreases compared to 

the T+RHi+w model. However, in general, there are small improvements across all platforms 
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compared to the T+RHi+w model. CALIPSO shows the most improvement in clear sky 

prediction, CloudSat improves in mixed phase prediction, and DARDAR shows improvement 

in clear sky prediction. 

Overall, this evaluation provides insights into the performance of ML models in predicting 

specific cloud phases. The T+RHi+w model demonstrates improvements in predicting cloud 

phases compared to single predictor models, but the inclusion of Na as a predictor has mixed 

effects on prediction accuracy, depending on the platform and cloud condition. 

2.4.4.3 In-cloud examination 

The cloud phase combination comparisons (Fig. 21) are used to demonstrate the 

correspondence between cloud phases identified through in-situ observations and satellite data. 

The all-phase combination provides a distribution of how each in-situ cloud phase aligns with 

its satellite detection counterpart, with clear sky represented as 0, liquid phase as 1, mixed 

phase as 2, and ice phase as 3. The combination is structured with the in-situ observation as 

the first digit and satellite observations as the second digit. Each bar represents a unique 

combination of cloud phases, and the bright green color indicates the correct predicted amount 

of the cloud phase combination. Each column represents in-situ, CALIPSO, CloudSat, and 

DARDAR. In contrast to the previous analysis containing both clear sky and three cloud 

phases, the in-cloud cloud phase combination only focuses on liquid, mixed, and ice phase 

combinations by in-situ and satellites.  

In the in-situ analysis (Fig. 21 a – e), the best-performing models for predicting the liquid 

phase are the T model, followed by the RHi model, and finally the w model. When it comes to 
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Figure 21. in-cloud cloud phase combination comparison by combining in-situ and satellite 
observations of cloud phase to demonstrate each model predictors setups variability. 

predicting the mixed phase, the RHi model and T model exhibit the best performance, while 

the w model performs similarly to them. In terms of ice phase prediction, the T model 

demonstrates exceptionally accurate predictions, while the RHi model and w model yield 

similar results. Overall, the T model and RHi model outperform the w model in various aspects, 

with the T+RHi+w model combining the strengths of both the T model and RHi model, where 
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the T model has the most significant influence. This analysis highlights the strengths and 

weaknesses of each model and provides valuable insights into their performance for different 

cloud phases. 

The comparison between in-situ and satellite cloud phase combination ML performance 

reveals a similarity to the in-situ only model prediction. The T model stands out as the best 

performer for the liquid and ice phases. However, for the CloudSat platform, the "33" 

combination is often misidentified as "32", and the combination "12" does not exhibit strong 

predictive capabilities. In the case of DARDAR, the mixed phase section shows that 

combination "22" is the best predicted, while combinations "21" and "23" have average 

predictions. The RHi model demonstrates a good representation of the mixed phase 

combinations, aligning with the in-situ only ML performance. The w model, as in the previous 

section, exhibits poor and random predictions. The T+RHi+w model's performance is also 

similar to the previous section, with the CALIPSO "13", CloudSat "12", and DARDAR "13", 

"21", and "23" combinations being the least accurately predicted among all. 

2.5. Discussion and Conclusion 

The results of the study provide insights into the thermodynamic and dynamic distribution 

of ice phase occurrence, in-cloud frequency, and cloud phase identification accuracy. The 

analysis compared satellite observations from CALIPSO, CloudSat, and DARDAR with in-

situ measurements to evaluate their performance. 

In terms of in-cloudF, CALIPSO demonstrated accurate cloud occurrence detection, 

although slight biases were observed at specific temperature and RHi ranges. CloudSat and 

DARDAR exhibited consistent patterns of cloud occurrence, with CloudSat showing a modest 
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dependence on temperature and RHi. However, potential issues with cloud phase identification 

were noted, particularly in over-predicting mixed-phase clouds. Regarding the iceF, CALIPSO 

showed a strong correlation with temperature and RHi, with no ice phase detection above 0°C 

and a complete ice phase below -40°C. DARDAR also exhibited temperature dependence but 

detected ice occurrence even above 0°C. CloudSat demonstrated pronounced reliance on 

temperature within the range of 0°C to -40°C. However, it did not reach 100% iceF below -

40°C, indicating potential issues with its cloud phase identification algorithm and over-

prediction of mixed-phase clouds. 

The analysis of temperature and vertical velocity distribution revealed that lower 

temperatures and higher vertical velocities were associated with higher cloud occurrence. The 

temperature-dependent ice phase frequency highlighted the sensitivity of ice formation to 

thermal conditions. Unique patterns exhibited by CloudSat, such as lower iceF below -40°C 

and a decrease in iceF at specific vertical velocities, require further investigation into 

underlying mechanisms and potential biases in cloud phase identification algorithms. The 

cloud phase PDF analysis compared the distribution of cloud phases between satellite products 

and in-situ observations. CALIPSO generally exhibited good agreement with in-situ 

observations, while CloudSat and DARDAR showed some deviations. CloudSat and 

DARDAR tended to over-identify mixed-phase clouds, particularly at lower RHi values. The 

ice phase PDF showed nearly perfect alignment with in-situ observations, but some differences 

were observed at higher temperatures. Linear regression analysis of ice phase and in-cloud 

frequency using machine learning models showed that temperature played a significant role in 

ice phase occurrence, with decreasing iceF at higher temperatures. Machine learning models 
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captured broader trends in ice phase frequencies but faced challenges in accurately predicting 

frequencies within specific temperature ranges. In terms of in-cloud occurrence frequency, the 

incorporation of multiple variables such as temperature, RHi, and vertical velocity improved 

the models' predictive capabilities. 

The evaluation of each variable's importance in cloud conditions revealed varying reliance 

on specific predictors across different observation platforms. The combination of temperature, 

RHi, and vertical velocity improved predictions for both clear sky and in-cloud conditions. The 

inclusion of aerosol concentration as a predictor further enhanced predictions, particularly for 

DARDAR. Overall, these findings emphasize the importance of evaluating satellite algorithms 

and incorporating multiple variables in machine learning models for cloud prediction. The 

accurate identification and understanding of cloud phases are crucial for improving satellite-

based cloud observations and advancing our knowledge of cloud processes in the atmosphere. 
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