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San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Wooyoung Chung

May 2024



© 2024

Wooyoung Chung

ALL RIGHTS RESERVED



The Designated Thesis Committee Approves the Thesis Titled

AN EXPLORATION OF DIMENSIONALITY REDUCTION OF DYNAMICS ON LIE
GROUPS VIA STRUCTURE-AWARE CANONICAL CORRELATION ANALYSIS

by

Wooyoung Chung

APPROVED FOR THE DEPARTMENT OF COMPUTER ENGINEERING
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ABSTRACT

AN EXPLORATION OF DIMENSIONALITY REDUCTION OF DYNAMICS ON LIE
GROUPS VIA STRUCTURE-AWARE CANONICAL CORRELATION ANALYSIS

by Wooyoung Chung

Incorporating prior knowledge into a data-driven modeling problem can drastically

improve performance, reliability, and generalization outside of the training sample. The

stronger the structural properties, the more effective these improvements become.

Manifolds are a powerful nonlinear generalization of Euclidean space for modeling

finite dimensions. When additionally assuming that the manifold carries (Lie) group

structure, this imposes a drastically stricter global constraint. The range of their

applications is very wide and includes the important case of robotic tasks. We apply this

idea to Canonical Correlation Analysis (CCA).

In traditional CCA one constructs a hierarchical sequence of maximal correlations of

up to two paired data sets in Euclidean spaces. We here generalize the CCA concept to

respect the structure of Lie groups and demonstrate its efficacy through the substantial

improvements it achieves in making structure-consistent predictions about changes in the

state of a robotic hand.
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1 INTRODUCTION

Simplicity that respects structure is a desirable property of effective control. Typically, it

improves a method’s robustness, feasibility, and flexibility and is achieved by reducing its

complexity. A common form of complexity reduction is realized by dimensionality reduction,

which represents a special case of the more general principle of information compression

methods.

One popular information compression model is the Information Bottleneck (IB) [1], [2], a

principled method to achieve such reductions with intimate links to statistical machine

learning. Of particular interest to the control community is the fact that the IB is a direct

generalization of the well-established CCA [3]. In the case of (locally) linear Gaussian models,

CCA permits tuning the degree of structural preservation from one variable to another. The IB

thus implements a ”soft” CCA in the Gaussian case [4], [5].

However, CCA and its informational generalization (IB) purely concentrate on preserving

the dependency of the target variables. They are utterly indifferent to any particular additional

structure of the problem, some paradigmatic consequences of which we now illustrate in a

pertinent example.

In [5], an IB is applied to a linear Gaussian control channel which thus reduces to a soft

CCA model. Reducing the information that a simpler model has access to, the process leads to

a progressive reduction of the dimensionality in the accompanying soft CCA. However, this

reduction is purely correlational and does not consider the special structure of the control loop,

as discussed in [6]. Concretely, in the controlled system, the matrix transforms the process’

past dynamics into the process’ future dynamics. The original transformation has a particular

recursive structure following that of the Hankel matrix [3]. After the system is naively subject

to information/dimensionality reduction, the resulting reduced transformation matrix for the

compressed system no longer has a Hankel structure [5].
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The structural deficit is alleviated in [6] by modifying the approach of [5] to constrain the

reduced transformation matrices to satisfy the properties of a proper Hankel matrix to

represent actual control systems. However, this approach is unsuitable for general use due to

the requirement of handcrafting the information reduction method to respect the Hankel matrix

structure of the control problem.

The present work presents a method to support a generalizable approach to produce

structure-respecting IB in the future. We modify the traditional CCA method to respect the

structure of a manifold to which the variables of interest and their interrelation are confined. In

other words, we constrain our problem space to manifolds instead of the Euclidean space.

To achieve this we note that the naive concept of various averaging operations used to

compute the CCA in the Euclidean case needs to be modified, as manifolds do not offer mean

and variance computation via vector addition operations. Therefore, instead, we resort to the

variational description of the quantities of interest. The idea is analog to the fact that, in

Euclidean space, the centroid of given data points can not only be computed by directly taking

the average vector of the data points but, alternatively, by finding that point that minimizes the

sum of its squared Euclidean distances to the given data.

The key components of the proposed method will be: 1. this variational principle, now

with manifold-intrinsic distance, to replace the Euclidean averaging operation to compute the

generalized mean, and 2. using projections to sub-manifolds replacing those to Euclidean

vector subspaces.

The paper is organized as follows. Section 2 begins with a general overview of well-known

concepts and the novelty of our approach. The overview is followed by the preliminaries

relevant to the development of the formalism in Section 3 (note that Lie Theory and manifolds

as relevant to the paper are covered in the Appendix). We highlight how to replace the

computation of the mean and centroid with a variation of expected distance to transfer the

concept from Euclidean space onto Lie groups. This step is crucial for the development of the
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Intrinsic CCA. A Literature Review is presented in Section 4 where we go through important

related works that have aided in development of ICCA. Section 5 presents the proposed

method for ICCA, extending the concept of principal geodesic curves to canonical geodesic

curve pairs, denoted by intrinsic CCA, and represents an efficient algorithm for the calculation

of ICCA from data points on high-dimensional Lie groups. In Section 6, we demonstrate this

algorithm on a high-dimensional articulated robotic system, an anthropomorphic robotic hand,

whose configuration space is given, in general, by the corresponding multi-dimensional Lie

group. Section 7 represents potential future directions. Finally, we reanalyzes the paper to

summarize our work and understand the impact of the findings.

This work has been accepted to the American Control Conference 2024 and this book has

been adapted from the paper ”Dimensionality reduction of dynamics on lie groups via

structure-aware canonical correlation analysis” [7].
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2 OVERVIEW

Existing methods for dimensionality reduction consider their source data living in ”flat”

Euclidean spaces and are utterly agnostic to any potential additional structure or

constraints [3], [4], [8]–[10]. Specifically, there are no methods for joint dimensionality

reduction (compression) of two sets of points when these are restricted to a Lie group.

Joint compression could reveal predictive models between one set to another, with

additionally choosing a desired level of complexity and details. In particular, such

structure-preserving predictive models would permit the reconstruction of a point in one set on

the Lie group from a point in another set on the same Lie group. A particular scenario of

interest is the estimation of dynamical models on the manifold, where two sets of points on

the manifold represent the current state and the state in T time steps to the future. This

estimation is much more difficult or impossible if a model does not preserve the manifold

structure. Concretely, here, we propose a method to generalize the CCA to the ICCA on

general Lie groups.

Applying the Riemannian approach to CCA allows us to control the model’s intrinsic

complexity by choosing how many intrinsic geodesic pairs are being used (Section 5) while

accounting for the additional intrinsic structure and.

Our main contributions include:

1) Two algorithms for ICCA decomposition and reconstruction;

2) Reduction in the prediction error of the future state of robotic hand from the current state

compared to the existing baseline dimensionality reduction methods;

3) Structural guarantees that the predicted state is confined to the Lie group.

As one remarkable result, we found that the relationship between the ”intrinsic” times of the

basic geodesic movements can be mapped linearly to each other (Section 6).
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3 PRELIMINARIES

This work uses the standard definitions of the Lie group (including the groups for rotation

and translation) frequently used in robotics. This background is provided in the Appendix for

completeness.

The next section gives an overview over the key components of the proposed method

(intrinsic distance, averaging operations, and sub-manifold projection).

3.1 Intrinsic vs. Extrinsic Means

Intrinsic and extrinsic calculations differ fundamentally from one another. Extrinsic

(Euclidean) calculation limits itself to the linear constraint and does not account for the

non-linear structure embedded in many datasets. To develop a structure-aware ICCA, we will

need to calculate the intrinsic mean and projections of data points on the Lie group to its

sub-manifolds (Section 3.3). We now introduce the definitions on which the intrinsic

analogues of Euclidean concepts will be based on.

Given a set of data points {xi}N
i=1 in a metric space, X , their mean, µx, is defined by:

µx = argminx∈X

N

∑
i=1

D2(x,xi), (1)

where D(·, ·) denotes the distance between points in X and is assumed the minimum to be

unique. I.e., the mean of a set of points in a general metric space is defined by the solution to

the optimization problem in Eq. (1).

This variational formulation offers a generalization of the mean beyond spaces in which

arithmetic means can be computed, i.e. which permit convex combinations or explicit addition

operators, such as the standard Euclidean space. In the latter, Eq. (1) has as closed-form

solution the traditional arithmetic average of the data points, µx =
1
N ∑i xi.

3.1.1 Intrinsic mean

We now apply this variational method to compute the mean intrinsically to a Lie group.

Given a Lie group, X , the distance between data points, x1,x2 ∈X is given by the

5



Riemannian distance on the manifold:

D2(x1,x2)≜ || log(x−1
1 x2)||22, (2)

where the inverse is a Lie group inverse and ’log’ denotes the logarithmic map1

. With this, we generalize the calculation of the intrinsic mean [11], [12] of

x1,x2, . . . ,xN ∈X by solving Eq. (1). The problem in Eq. (1) can be solved iteratively [11],

[12] or can be approximated for small x1 and x2 by the Baker–Campbell–Hausdorff

formula [13], [14] given by Eq. (3):

|| log(x−1
1 x2)||2 ≈ || log(x2)− log(x1)||2, (3)

which omits the non-commutative terms between x−1
1 and x2.

3.1.2 Extrinsic mean

If we would instead embed data points from the Lie manifold X into the ambient

Euclidean space [15] we can calculate the mean in Eq. (1) directly using the Euclidean

distance of the ambient space via the arithmetic computation of the mean, leading to the

traditional extrinsic mean. However, in general, this mean will not be a point on a manifold.

This creates a discrepancy between the internal structure of the data and its extrinsic statistics.

This discrepancy results in imprecise modeling of data if these are actually constrained to a

manifold and, hence, in deficient generalization across samples. By violating the constraints

represented by the manifold structure, the extrinsic mean may not even represent a physically

realizable configuration of the system at all.

1. Strictly spoken, the logarithmic map is defined locally. Without loss of generality, we resolve ambiguities by choosing
the pre-image of its argument with respect to the exponential map with the minimal norm and breaking remaining ambiguities
as per convenience of the respective computation.
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3.2 Banana Distribution

Similar to the mean, the Gaussian distribution differs fundamentally from its intrinsic and

extrinsic forms [16].

In extrinsic Gaussian distribution, the variation of the data is considered linearly, where the

most likely position (calculated by the extrinsic mean) lies in its center. This creates an oval

area of distribution that is utterly blind in accounting movement Fig. 1.

f (x) =
1

σ
√

2π
e
−

1
2

(x−µ

σ

)2

(4)

Contrarily, intrinsic Gaussian distribution, also known as concentrated Gaussian

distribution [17], creates a distribution that accounts for the structure of the data. This can be

done by mapping the standard multivariate Gaussian distribution into the group space ε and

then adding it to the intrinsic movement µ seen in Fig. 2.

X = µexpG(ε) (5)

Let’s consider the scenario of a two-dimensional car that moves straight with a little noise

to the steering (seen in Fig. 1). We should expect the distribution to be in the shape of a

banana as the variance in the rotation of the steering should not change the distance traveled

from the initial point. This is what we get for concentrated Gaussian distribution labeled exp

pdf in Fig. 1. And of course, the standard Gaussian distribution (labed XY pdf) was unable to

correctly represent this movement as it just creates a little oval around its expected point.
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Fig. 1. An experiment of comparing intrinsic and extrinsic Gaussian distribution was conducted
on a two-dimensional car with the task of moving straight with a noise added to its steering. The
red circles represent extrinsic Gaussian distribution while the blue circles represent intrinsic
Gaussian distribution (concentrated Gaussian distribution). From this, we see that concentrated
gaussian was successfully formed its distribution that is non-linear

3.3 Projection to Subgroups

Let G and g be the Lie group and its corresponding algebra. For an arbitrary unit vector

v ∈ g, we can define a one-parameter subgroup Hv of G [11]:

Hv ≜
{

exp(tv) ∈ G : t ∈ R
}
, (6)

8



Fig. 2. Concentrated Gaussian Distribution

where ’exp’ is the exponential map from g to G, given in Eq. (31). The distance between any

x ∈ G and Hv is given by:

D(x,Hv)≜ min
t

D(x,exp(tv)), (7)

with the optimal value of t being given by:

t∗ =argmint D(x,exp(tv)), (8)

9



determining the projection of x onto Hv:

ProjHv
(x)≜ exp(t∗v). (9)

This projection of a group element to a one-parameter subgroup is a core component in the

Intrinsic PCA [11], [14] (explained in the next section), which we generalize to Intrinsic CCA

in this work.
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4 LITERATURE REVIEW

4.1 Information Compression

Information compression is the task of reducing the size of the data while trying to

maintain as much information as possible. The foundation of information compression is

based on Shannon’s Source Coding Theorem [18] that states: A source with entropy rate H

can be encoded with an arbitrarily small error probability at any rate R > H. Conversely, if

R < H, the error probability will be bounded away from zero, independent of the encoder and

decoder employed.

Machine learning has proven a promising direction for information compression. The

effective data generalization task of machine learning mirrors the minimization of storage of

data compression. Recent works include DeepMind’s Chinchilla LLM [19] that used deep

learning to efficiently compress images with performance being better than many recognizable

image compression methods such as Portable Network Graphics (PNG).

Existing methods for dimensionality reduction consider their source data living in ”flat”

Euclidean spaces and are utterly agnostic to any potential additional structure or

constraints [3], [4], [8]–[10]. Some common methodologies, such as Information Bottleneck

(Section 4.1.1), Principal Component Analysis (Section 4.1.2), and Canonical Correlation

Analysis (Section 4.1.3) are such methods.

4.1.1 Information Bottleneck

With the success of deep neural networks (DNN) and deep learning (DL) in many

applications of supervised learning, information bottleneck (IB) was developed with the

formulation of using deep learning as a trade-off between compression and prediction [1].

The information bottleneck (IB) method was developed for extracting relevant information

from random variable X about random variable Y through the use of mutual information

I(X;Y) from its joint distribution p(X,Y) [1]. Its basis lies in encoding the information of the

11



target random variable Y into a latent representation Z from the input target variable X, I.E.

minimizing I(X;Z) and maximizing I(Z;Y) through the minimization of the Lagrangian:

L [p(Z|X)] = I(X ;Z)−β I(Z;Y ) (10)

The information bottleneck principle is further extended through variational approximation

that utilizes the reparameterization trick [20] to present variational approximation to the

IB [21]. From this, variational IB performs better generalization and sample efficiency by

finding a better structure of the latent representation Z.

The IB and its extended variational IB method have been used in word cluster

analysis [22], image sparse latent representation [23], and robotic prior exploration [24].

4.1.2 Principal Component Analysis

Principal component analysis (PCA) is one of the most popular dimensional reduction

methods for data exploration, visualization, and preprocessing. The linear dimension reduction

method compresses data into orthogonal linear combinations called principal components (PC)

that capture the variance [25].

Traditional PCA is concerned with dimensionality reduction through the projection of data

to linear subspaces, minimizing the reconstruction error. As one increases the dimensionality

of the subspaces, new independent (orthogonal) additional features are accounted for.

Whether in the Euclidean or the manifold case, the calculation is based on the above

principle of hierarchical projection of data on those subspaces or -manifolds which minimize

the mean projection error between the data points and the corresponding subspace [14]. The

difference between PCA in the Euclidean space and PCA on the Lie group is in the definition

of the subspace and that of the distance, and the operators used for averaging.

PCA in Euclidean Space One calculates the hierarchical projections beginning with the first

PCA component, k = 1, which is a one-dimensional linear (strictly spoken, affine) space.

12



Given the Euclidean space, X , we compute it by seeking a one-dimensional subspace onto

which the data points x1,x2, . . . ,xN ∈ X project with the least total distance loss [14], more

precisely, we seek Sv = {tv : t ∈ R} such that:

v(1) = argmin||v||=1

N

∑
i=1
||xi−ProjSv

(xi)||22, (11)

where ProjSv
(x) = (x · v)v is the optimal projection of x on Sv. We compute the subsequent

PCA components recursively by proceeding to increasingly higher-dimensional subspaces, by

removing the contribution of the already established subspaces and minimizing the distance

loss of the data points with respect to the newly added one. Concretely, for k > 1, we calculate

recursively [14]:

v(k>1) = argmin||v||=1

N

∑
i=1
||xi−ProjSv

(xi)−
k−1

∑
ℓ=1

ProjS
v(ℓ)

(xi)||22. (12)

In other words, the first projection minimizes the deviations to the first component, and all

subsequent projections minimize the residual deviation to the new component after all

previous components have been accounted for.

There are two essential differences between PCA in the Euclidean space and on the Lie

group. First, the Euclidean distance function is inappropriate for estimating the projection

error on the Lie group. Instead, the manifold-intrinsic distance, such as the Riemannian

distance, should be used [26]. Second, the sub-spaces/principal components in the Euclidean

space are given by vector (strictly spoken, affine, if the mean does not coincide with the

origin) subspaces, while in the Lie group, they are given by principal geodesic curves.

PCA on Lie Groups The generalization of the first principal vector in Eq. (11) to the first

principal geodesic curve is achieved by combining Eq. (1),Eq. (7), and Eqs. (11) and (12).

One obtains the first principal geodesic curve, [14]:

v(1) = argmin||v||=1

N

∑
i=1

min
t
|| log

(
(µ−1xi)

−1 exp(tv)
)
||2, (13)
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where µ , ′ log′, and ′ exp′, are the mean, given in Eq. (1), the logarithmic and exponential

maps (cf., Appendix), accordingly.

The principal geodesic curves for k > 1 are defined analogously to v(k>1) in Eq. (12), again

, with the appropriate distance (Eq. (7)), projection (Eq. (9)), and mean (Eq. (1)), respectively.

4.1.3 Canonical Correlation Analysis

Canonical Correlation Analysis (CCA) is a fundamental tool to estimate two subspaces

and a linear transformation between them from data, such that each of the original data sets

are represented by (projected to) the corresponding subspaces with minimal error; similarly,

there is a minimal error between the projected data to these subspaces.

Its applications extend far beyond pure data analysis; they include computer vision [27],

speech synthesis [28], and robotic control [29]. Notably, and of particular interest for control,

CCA and its information-theoretic generalization has been proven useful for the

dimensionality reduction of linear dynamical systems [3]–[6]. With its wide variety of

applications, however, conventional CCA tends to handle non-linear data poorly due to its

Euclidean assumptions [30]. One can therefore expect that adapting CCA to the intrinsic

structure of the data it is to represent should improve the ability of this dimension reduction

technique to respect and faithfully preserve the mapping between the set of data pairs.

4.2 Structured Learning

Machine learning has experienced significant growth in both use and relevance in society.

It is used in many applications such as self-driving cars and object manipulation. With bigger

and grander tasks, the complexity and time cost have grown tremendously. To learn these data,

we must learn the structure and its pattern either implicitly or explicitly. In conventional

(unstructured) learning methods, the structure is learned implicitly.

Unstructured methods treat data linearly, where all points in the data can be placed in a

global Euclidean space. Although Euclidean representation can be generalized to nearly all

data-oriented tasks, it comes at the price of representing data in a high-dimensional space
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where not all points are possible data configurations. Especially when trying to learn a highly

complex task, it is essential to have sample efficiency and interpretability

On the contrary, structured learning explicitly defines the structure of the data. This finds a

balance of expressive power and querying efficiency by incorporating prior knowledge [31].

By taking advantage of prior knowledge that is often easily obtainable from data, the task of

learning provides structural guarantees that follow the implicit rules of the data. This leads to

exponentially decreased learning complexity by limiting the learning space to its structured

constraints.

4.2.1 Manifold Learning

Manifold learning is a non-linear dimension reduction method where data is represented

through lower-dimensional latent manifolds. Manifold learning is based on the Manifold

Hypothesis, which states that high-dimensional data often lies within low-dimensional

manifolds [32].

Manifold learning provides mapping that facilitates a smooth transition between two data

points, aligning with the inherent structure of the dataset. This provides a significantly

improved compression of data with minimal loss of information. The unsupervised technique

has found application across various tasks, including its utilization within the discriminator of

GANs to augment generative learning [33]. Additionally, manifold learning has gained popular

use in improving cluster analysis for better visualization and analysis [34].

4.2.2 Structured Prediction

Structured prediction employs a supervised methodology within structured learning,

aiming to narrow down the predictive range of the output. When implemented with neural

networks, this is typically achieved through two primary methods: either by structuring the

output directly [35] or by integrating structural constraints within the hidden layers [36].
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NLP has been popular in incorporating structured prediction by incorporating structures

such as Part-Of-Speech Tagging [35], non-linear feature parsing [37], and sequence

labeling [38].
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5 METHODOLOGY

In this work, we propose a particularly useful specialization of the nonlinear case, namely

a CCA that ”lives” specifically on Lie groups. Such an operation is of particular interest in the

context of robotics [39]. Environments that contain complex manipulation, shape

modifications, or other structural changes can be suitably described in the language of Lie

group operations.

Much like in PCA, CCA implements a hierarchy of projections between data and

sub-spaces. However, CCA uses two projections per component, called the canonical pairs. In

the Euclidean space these pairs are derived using the standard distance, averaging and

projection operators.

In order to define the intrinsic CCA, we thus translate its functionality, given in the first

paragraph of this section, into the language of intrinsic distance, averaging and projection

operators on the Lie group, as follows.

Projection on the Subgroups We define one-parameter subgroups Hv and Hu of G, a distance

between x,y ∈ G and Hv, Hu, respectively, where v,u ∈ g:

Hv ≜
{

exp(tv) ∈ G : t ∈ R
}
, (14)

Hu ≜
{

exp(su) ∈ G : s ∈ R
}
, (15)

D(x,Hv)≜ min
t

D(x,exp(tv)), (16)

D(y,Hu)≜ min
s

D(y,exp(su)), (17)

By using the base movement of (v, u), we can represent each data point pair through the

optimal projection times (t∗,s∗):

t∗ =argmint D(x,exp(tv)), (18)

s∗ =argmins D(y,exp(su)). (19)
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The distance, D(·, ·), in Eq. (16) and Eq. (17) is the intrinsic Riemannian distance Eq. (2).

5.1 Intrinsic Canonical Correlation Analysis

Our methodology relies on optimizing projections to minimize the distance between the

two subgroups of the set of points. We compress the original data into the pair (v,u) with their

corresponding projection times (t∗,s∗). (v,u) and (t∗,s∗) are selected to minimize the

prediction error between the past and future trajectory on the manifold, corresponding to the

first vs. second entry of the pair, respectively, as explained below.

5.1.1 First ICCA pair

Given N point pairs, {xi ∈ G,yi ∈ G}N
i=1, on the Lie manifold, G, we defined the first

canonical geodesic pair as a pair of vectors in the corresponding Lie algebra, g,(
v(1) ∈ g,u(1) ∈ g

)
, representing two one-parameter subgroups

(
Hv,Hu

)
, with which the data

are maximally associated through their projections ProjHv
(xi) ∈ G,ProjHu

(yi) ∈ G, i = 1 . . .N

with corresponding parametrizations t∗i ,s
∗
i .

We propose to calculate the first ICCA pair from N point pairs {xi,yi}N
i=1 on the manifold

by:

v(1),u(1) = argmin
||v||=||u||=1

N

∑
i=1

(
D2(µ−1

x xi,Hv) (20)

+D2(µ−1
y yi,Hu)

+D2(ProjHv
(µ−1

x xi),ProjHu
(µ−1

y yi)
))

.

or, explicitly,

v(1),u(1) = argmin
||v||=||u||=1

N

∑
i=1

(
min

t
D2(µ−1

x xi,exp(tv)) (21)

+ min
s

D2(
µ
−1
y yi,exp(su)

)
+D2(exp(t∗i v),exp(s∗i u)

))
,
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where the first two terms define for each i the time pair (t∗i ,s
∗
i ) via Eqs. (18) and (19), while

the third term is the distance between the projected xi and yi, with the corresponding t∗i and s∗i ,

from each other. The joint projections given by the first two terms and the last term in Eq. (21)

extend the intrinsic PCA towards the ICCA.

Optimal Projection Time. The solution to Eq. (20) includes
(
v(1),u(1)

)
and

(
t∗i ,s

∗
i )

N
i=1. Given

this solution we train a linear regression model, f (1)ψ , parameterized by ψ , to predict s from t:

ψ
∗ = argmin

ψ

1
N

N

∑
i=1

(
s∗i − f (1)ψ (t∗i )

)2 (22)

which we concisely denote by ŝ(t):

ŝ(t) = f (1)
ψ∗ (t). (23)

The model in Eq. (23) allows us to reconstruct ŷ from x using the first ICCA pair by:

t∗ = argmint D(x,exp(tv(1))), (24)

ŷ = exp
(
ŝ(t∗)u(1)

)
, (25)

where D(·, ·) and ’exp’ are the (intrinsic) Riemannian distance Eq. (2) and the exponential

map Eq. (31), respectively.

Given that the two sets of data are assumed to be associated, the (t∗,s∗) derived from these

data sets is expected to preserve some level of association with one another. A fortiori, we

empirically found in our experiments (cf., Section 6) that the dependency between the optimal

(t∗i ,s
∗
i ) is linear, and even close to the identity, as shown at Figure 4. We have not yet

established a stringent theoretical justification for this phenomenon, whether this is a general

property of the algorithm, a consequence of the construction of t and s from normalized

vectors, stemming from constraining ourselves to the Lie group property, or a peculiarity of

the particular experimental scenario.
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We proceed by recursively defining the next ICCA pairs.

5.1.2 Next ICCA Pairs

Denote the projection of µ−1
x xi on Hv(1) by Proj(1)(xi), and the projection of µ−1

y yi on

Hu(1) by Proj(1)(yi).

Firstly, we remove Proj(1)(xi) from µ−1
x xi and Proj(1)(yi) from µ−1

y yi, which results in x(2)i

and y(2)i , respectively. Then, given ∀i : (x(1)i ,y(1)i ) = (exp(t∗i v(1)),exp(s∗i u(1))), we define the

second ICCA pair by:

v(2),u(2) = argmin
||v||=||u||=1

N

∑
i=1

(
D2(x(2)i ,Hv) (26)

+D2(y(2)i ,Hu)

+D2(ProjHv
(x(2)i ),ProjHu

(y(2)i )
))

.

In general, the (k+1)-th ICCA pair is recursively defined by:

v(k+1),u(k+1) = argmin
||v||=||u||=1

N

∑
i=1

(
D2(x(k)i ,Hv) (27)

+D2(y(k)i ,Hu)

+D2(ProjHv
(x(k)i ),ProjHu

(y(k)i )
))

.

where x(k) and y(k) are the residual data pair from the last iteration. The solution to the ICCA

problem consists of all k ICCA pairs
(
v(k),u(k)

)
and their corresponding mappings f (k)(t)

between the optimal projection times.

The equations Eq. (26) and Eq. (27) represent the decomposition of data into the k

canonical pairs. We present two algorithms to decompose and reconstruct two data sets on the

Lie group using the first canonical pair Eq. (21), which can be extended to the k-th canonical

pair by Eq. (26) and Eq. (27). We show in Section 6 that already the first ICCA pair results in

a significantly lower prediction error in comparison to the standard Euclidean CCA.
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Algorithm 1 ICCA Decomposition

1: Input: {xi,yi}N
i=1 ∈ G - data pairs on the manifold, G.

2: Initialize
3: v, t∗← argmin

||v||=1
∑

N
i=1 min

t
|| log

(
µ−1

x xi exp(tv)
)
||2,

4: u,s∗← argmin
||u||=1

∑
N
i=1 min

s
|| log

(
µ−1

y yi exp(su)
)
||2,

5: repeat
6: v,u← Eq.(21) ▷ with fixed {t∗i ,s∗i }
7: {t∗i }N

i=1←
{

argmin
t

D(µ−1
x xi,exp(sv))

}N
i=1

8: {s∗i }N
i=1←

{
argmin

s
D(µ−1

y yi,exp(tu))
}N

i=1

9: until convergence
10: ŝ(·)← Eq.(23)
11: return {v(1),u(1)} and ŝ(·).

1) ICCA Decomposition: extracts the first canonical pair, and calculates the model, ŝ,

mapping one optimal projection time, t∗, to the other, s∗. The subsequent pairs can be

calculated by applying Eq. (27).

2) ICCA Reconstruction: Predicts y ∈ G from x ∈ G using the first canonical pair.

5.2 ICCA Decomposition

The ICCA decomposition uses iteration to solve for the minimization for the first

canonical pair. The algorithm contains two stages: initialization and iteration.

The distance, D(·, ·) between a point on the manifold and a one-dimensional sub-manifold

has multiple local minima. We initialize the algorithm by firstly finding the optimal projection

of the data set to the first canonical pair (v(1),u(1)), lines 2-4 in Alg. 1. Then, we optimize the

full objective in Eq. (21) until convergence, lines 5-9 in Alg.1. Note that, for this, the iteration

stage alternates between finding the optimal canonical pair (v(1),u(1)) and its respective

optimal projection times for the data, {t∗i ,s∗i }N
i=1.

At convergence, we estimate the predictor for s∗ from t∗ using linear regression, Eq. (23).

The algorithm returns the model ŝ, and the optimal first canonical pair (v(1),u(1)).
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5.3 ICCA Reconstruction

Given the k ICCA pairs (v(k),u(k)) and the model for the optimal prediction time, ŝ(t), we

can use these to reconstruct a secondary point ŷ(x) ∈ G on the Lie group from a primary point

x ∈ G on the Lie group, as follows:

t(1) = argmint D(x,exp(tv(1)))

∀k ≥ 1 : t(k+1) = argmint D(x(k),exp(tv(k)))

ŷ = exp
( K

∑
k=1

ŝ(k)(t(k))u(k)
)
∈ G, (28)

where x(k) is as explained after Eq. (27) in Section 5.1.2.
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6 EXPERIMENTS

The state space in articulated robotic systems [39] lies within a manifold consisting of

group elements such as rotations and translations. The novelty of ICCA is the ability to

account for these intrinsic properties of the robotic states. A more consistent representation of

such states than provided by standard CCA would be one that remains inside the manifold

structure, leading to improved CCA output accuracy. The goal of the experiments is to answer

the following questions:

1) Can ICCA be effectively calculated from a finite sample of point pairs on the Lie group?

2) Is the ICCA reconstruction more accurate than that achieved by the standard Euclidean

CCA?

6.1 Experimental settings

The MuJoCo simulator [40] was used to generate the data for the evaluation of the ICCA

method on the anthropomorphic hand. The hand consisted of 14 finger joints; the inner finger

joint was represented as a 3D Special Orthogonal SO(3) group, and the other finger joints as a

2D Special Orthogonal SO(2) group.

The two data sets for the ICCA analysis consist of the original configurations of the hand

and the final configurations after 20 simulation steps with a stochastic action sequence ’Action

Noise’, as explained below. An example of the original (current) configuration, x ∈ G, is

shown in the top left image at Figure 5, and an example for the final configuration, y ∈ G, is

shown at the top right image.

The set of the current configurations, {xi}N
i=1 ∈ G, is generated by adding a stochastic

perturbation (noise) to x ∈ G, as explained below. Each of the final configurations,

{yi}N
i=1 ∈ G, corresponds to a particular {xi} ∈ G after applying the predefined action

sequence with small perturbation in each action. An example of a perturbed current

configuration and the corresponding final configuration of the hand are shown at the bottom
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left and right images of Figure 5, respectively. To create the original configuration set

{xi}N
i=1 ∈ G, we applied noise with the following features:

1) Configuration Noise: Gaussian noise with zero mean vector with dimensionality 14 and

diagonal covariance matrix, Σ14 = 0.02I14×14. This noise is added to the original

configuration.

2) Action Noise: Gaussian noise with zero mean, µ = 0.0 and variance, σ = 0.01. This

noise is independently added to each action in the predefined action sequence with length

20.

The total number of data points, {xi,yi}N
i=1, is N = 10×1500, split into 10 experiments

with 1500 data points in each experiment. 2 : 1 ’train-to-test’ split was performed on the data.

We used the training data set for the calculations of the first ICCA pair, (u(1),v(1)), and of the

regression model ŝ(t). The test set is used for measuring the reconstruction error between the

true final configuration, y, in (x,y), and the reconstructed configuration, ŷ(x), with (u(1),v(1))

and ŝ(t), as explained in Section 5.3. The reconstruction error was defined as the Mean

Squared Error (MSE) between ŷ = ŷ(x) and y. We compared the reconstruction error between

the conventional CCA (based on the Euclidean distance) and the proposed ICCA (based on

intrinsic distance).

6.2 Results

Accuracy and generalization are improved significantly for ICCA compared to CCA. The

MSE comparison shown at Figure 3. The training improvement achieved 16.41%, while the

testing improvement was 23.08%. ICCA achieved better generalization as the train-test

accuracy difference was 3.77% for ICCA and 16.05% for CCA. The significant improvement

can be attributed to the successful mapping of the non-linear structure of the robotic

configuration data, where a locally linear relationship is found (Seen in Figure 4). his outcome

highlights the significance of explicitly acknowledging the non-linear structure inherent in
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Fig. 3. MSE between the true and the reconstructed configurations of the anthropomorphic
robotic arm for CCA and ICCA in training and testing.

many datasets, as a considerable portion of these datasets exhibit greater simplicity within

their correct spatial representations.
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Fig. 4. Optimal Projection Time. t∗ vs s∗ comparison that uses the canonical pair to map
to the original data. t∗ and s∗ show a linear relationship between one another. Thus a simple
linear regression model would be suitable to map t∗ to s∗.
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Fig. 5. Anthropomorphic Robotic Hand used in Sec.6. The images above show one of the
simulations along with its ICCA reconstruction. Top-left represents the original state. Bottom-
left represents the initial configuration (the neutral state with noise). Top-right represents
the ground-truth configuration. Bottom-right represents the ICCA reconstruction of the final
configuration given the initial configuration.
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Fig. 6. Convergence of the ICCA loss for Grasping Hand in the iteration stage. The loss plot is
created by taking the average on 10 sets of experiments on the grasping hand task. The curve
is based on loss in the iteration stage of ICCA Decomposition. There is an additional loss
decrease in the initialization stage.
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7 FUTURE WORK

In this work, we were able to successfully apply a non-linear approach to CCA. From this,

we were able to significantly improve the performance by simplifying the compression by

representing the data in its inherent structure (Lie manifold). However, our work only focuses

towards CCA in terms of the Lie group. We defer to future work the theoretical study of the

relationship between the optimal projection times, which was found to be linear in the Lie

group and the extension of the introduced ICCA to the data on different manifolds which are

not necessarily Lie groups.
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8 CONCLUSIONS

This work presents a novel method to generalize CCA to the nonlinear setting of a Lie

group. The distance optimality, projection criteria, and subspace concepts generalize naturally

to the Lie setting via intrinsic Riemannian distances and geodesics, respectively. This setting is

a central application in the context of articulated robotic devices [41].

The projection-based approach opens doors to symmetry-aware methodologies, among

these, the learning of parameters in a transformation model.

Our formalism expressly uses the group-theoretic properties of the Lie group rather than

merely approximating the Lie group, e.g. via kernel-based approaches. However, further

refinements are based on explicitly symmetry-respecting learning methods, such as

kernels [42]. With the presented generalization, the option to incorporate further direct tools

from the theory of groups has now become available to enhance the quality of treatment of

systems with intrinsically symmetric structures.

We also emphasize that, like the whole family of PCA, CCA, and their informational

generalization, the Information Bottleneck methods, the ICCA method enables a controlled

hierarchical dimensional reduction of dynamical control systems respecting the constraint

manifold and thus allows us to control complexity without losing the structural guarantees

enforced by the constraints, and thus to substantially limit the performance loss due to the

approximation.

All the experiments and results can be reproduced by our code repository:

https://github.com/JWK7/ICCA

30

https://github.com/JWK7/ICCA


Literature Cited

[1] N. Tishby, F. C. Pereira, and W. Bialek, “The information bottleneck method,” in 37th
Annual Allerton Conf. on Communication, Control, and Computing, 2000, pp. 368–377.

[2] N. Slonim, “The information bottleneck: Theory and applications,” Ph.D. dissertation,
Hebrew Univ. of Jerusalem, Israel, 2002.

[3] T. Katayama et al., Subspace Methods for System Identification, vol. 1. Communications
and Control Engineering, 2005.

[4] G. Chechik, A. Globerson, N. Tishby, and Y. Weiss, “Information bottleneck for gaussian
variables,” in Advances in Neural Information Processing Systems 16, S. Thrun, L. Saul,
and B. Schölkopf, Eds., 2003, pp. 1213–1220.

[5] F. Creutzig, A. Globerson, and N. Tishby, “Past-future information bottleneck in
dynamical systems,” Physical Review E, vol. 79, no. 4, pp. 41 925–41 929, 2009.

[6] N. Amir, S. Tiomkin, and N. Tishby, “Past-future information bottleneck for linear
feedback systems,” in 54th IEEE Conf. on Decision and Control, 2015, pp. 5737–5742.

[7] W. Chung, D. Polani, and S. Tiomkin, “Dimensionality reduction of dynamics on lie
groups via structure-aware canonical correlation analysis,” in American Control Conf.
2024, April 2024.

[8] A. Klami, S. Virtanen, and S. Kaski, “Bayesian canonical correlation analysis,” Journal of
Machine Learning Research, vol. 14, no. 4, pp. 965–1003, 2013.

[9] G. Andrew, R. Arora, J. Bilmes, and K. Livescu, “Deep canonical correlation analysis,” in
Int. Conf. on Machine Learning, 2013, pp. 1247–1255.

[10] W. Wang, R. Arora, K. Livescu, and N. Srebro, “Stochastic optimization for deep cca via
nonlinear orthogonal iterations,” in 53rd Annual Allerton Conf. on Communication,
Control, and Computing, 2015, pp. 688–695.

[11] P. T. Fletcher, S. Joshi, C. Lu, and S. M. Pizer, “Gaussian distributions on lie groups and
their application to statistical shape analysis,” in 18th Int. Conf. on Information
Processing in Medical Imaging, 2003, pp. 450–462.

31



[12] M. Moakher, “Means and averaging in the group of rotations,” SIAM Journal on Matrix
Analysis and Applications, vol. 24, no. 1, pp. 1–16, 2002.

[13] A. Bonfiglioli and R. Fulci, Topics in Noncommutative Algebra: The Theorem of
Campbell, Baker, Hausdorff and Dynkin, vol. 2034. Springer Science & Business Media,
2011.

[14] P. Fletcher, C. Lu, and S. Joshi, “Statistics of shape via principal component analysis on
lie group,” in 2003 Conf. on Computer Vision and Pattern Recognition, 2003, pp. 95–101.

[15] A. Agrachev and Y. Sachkov, Control Theory from the Geometric Viewpoint, vol. 87.
Springer Science & Business Media, 2013.

[16] P. Agarwal et al., “The banana distribution is gaussian: A localization study with
exponential coordinates,” in Robotics: Science and Systems VIII, 2013, pp. 265–272.

[17] G. Bourmaud, R. Mégret, A. Giremus, and Y. Berthoumieu, “From intrinsic optimization
to iterated extended kalman filtering on lie groups,” Journal of Mathematical Imaging and
Vision, vol. 55, pp. 284–303, July 2016.

[18] C. Shannon, “A mathematical theory of communication,” Bell System Technical Journal,
vol. 27, pp. 379–423, 1948.

[19] J. Hoffmann et al., “Training compute-optimal large language models,” in 36th Conf. on
Neural Information Processing Systems, 2022, pp. 30 016–30 030.

[20] D. Kingma and M. Welling, “Auto-encoding variational bayes,” in 2nd Int. Conf. on
Learning Representations, 2013.

[21] A. Alemi, I. Fischer, J. Dillon, and K. Murphy, “Deep variational information bottleneck,”
in 5th Int. Conf. on Learning Representations, 2019.

[22] N. Slonim and N. Tishby, “The power of word clusters for text classification,” in 23rd
European Colloquium on Information Retrieval Research, 2001.

[23] A. Wieczorek, M. Wieser, D. Murezzan, and V. Roth, “Learning sparse latent
representations with the deep copula information bottleneck,” in 6th Int. Conf. on
Learning Representations, 2018, pp. 612–616.

32



[24] R. Dubey, P. Agrawal, D. Pathak, T. L. Griffiths, and A. A. Efros, “Investigating human
priors for playing video games,” in 35th Int. Conf. on Machine Learning, 2018, pp.
1349–1357.

[25] S. Wold, K. Esbensen, and P. Geladi, “Principal component analysis,” Chemometrics and
Intelligent Laboratory Systems, vol. 2, no. 1-3, pp. 37–52, 1987.

[26] J. Cahill, D. Mixon, and H. Parshall, “Lie pca: Density estimation for symmetric
manifolds,” Applied and Computational Harmonic Analysis, vol. 65, pp. 279–295, 2023.

[27] T. Kim, S. Wong, and R. Cipolla, “Tensor canonical correlation analysis for action
classification,” in 2007 IEEE Conference on Computer Vision and Pattern Recognition,
2007, pp. 1–8.

[28] R. Arora and K. Livescu, “Kernel cca for multi-view learning of acoustic features using
articulatory measurements,” in Proc. of the Symposium on Machine Learning in Speech
and Language Processing, 2012, pp. 33–37.

[29] G. Lisant, I. Masi, and A. Bimbo, “Matching people across camera views using kernel
canonical correlation analysis,” in Proc. of the Int. Conf. on Distributed Smart Cameras.
ACM, 2014, pp. 1–6.

[30] L. Chen et al., “Adaptive asynchronous control system of robotic arm based on
augmented reality-assisted brain-computer interface,” Journal of Neural Engineering,
vol. 18, no. 6, p. 66005, 2021.

[31] L. Melas-Kyriazi, “The mathematical foundations of manifold learning,” Ph.D.
dissertation, Harvard Univ., Boston, MA, 2020.

[32] A. N. Gorban and I. Y. Tyukin, “Blessing of dimensionality: mathematical foundations of
the statistical physics of data,” Philisophical Transactions of the Royal Society A, vol. 376,
p. 237, 2018.

[33] Y. Ni, P. Koniusz, R. Hartley, and R. Nock, “Manifold learning benefits gans,” in 2022
Conf. on Computer Vision and Pattern Recognition, 2022, pp. 11 255–11 264.

[34] M. Herrmann, D. Kazempour, F. Scheipl, and P. Kröger, “Enhancing cluster analysis via
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Appendix A

A finite-dimensional Lie group is a group that is at the same time a differentiable

manifold [43], [44]. For every point x ∈ G on the manifold, there exists a tangent linear vector

space T Gx. The tangent space at the identity element, T Ge, is special. It is called the Lie

algebra, g, of the Lie group, G. One can map elements of the Lie group (manifold) to those of

its algebra (linear vector space with an associative bilinear product) and vice versa by:

g
log
⇌
exp

G (29)

where ’exp’ and ’log’ are calculated via the corresponding Taylor series of the operators.

Concretely, ∀g ∈ g, exp(g) = ∑
∞
n=0

gn

n! , where gn=g◦g◦ · · · ◦g is the n-fold product of g in the

Lie algebra and the sum taken in the tangent space. Here we interpret the expression in terms

of the matrix representation of the algebra.

The Lie algebra, as a linear vector space, is spanned by a basis of k elements,

E = {E1,E2, . . . ,Ek}, where k is the dimension of the manifold G and Ei ∈ Rk. Thus every

element in the algebra, g ∈ g, interpreted as k-dimensional vector, is represented by a unique

linear combination of the basis elements

g(α) =
k

∑
i=1

αiEi, with k scalars ,α = {αi}k
i=1. (30)

Eq. (29) and (30) induce a mapping of the collection α to the Lie group, G, as follows:

G(α) = exp(g(α)) ∈ G.

The formalism is of particular interest for the special case of articulated robotic systems,

since its configuration space (under multiple concatenated links) is represented by the Lie

groups of rotations and translations, reviewed below.

A.0.1 Groups of rotation and translation

The Lie groups of 2D/3D spatial rotations, SO(2)/SO(3), and translations, SE(2)/SE(3),

fully characterize the primitive geometric motions of rigid bodies, and are widely used in
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Fig. 7. Here we can see a 3D rotation represented through the SO(3) group. The 3D rotation can
be represented through the surface of a sphere. The group movement contains two components,
the arbitrary unit vector of the 3D movement t and the scale of the movement t.

robotics [39], [45], [46]. Both groups admit matrix representations [44]. The group

composition operator, ◦, is the standard matrix multiplication and exp the matrix exponential.

The exponential map from the lie algebra to the corresponding Lie group in Eq. (29) can

be explicitly calculated by the Rodrigues rotation formula:

R = exp
(
θU
)
= I +U sinθ +U2(1− cosθ) ∈ R3×3, (31)

where I is the identity matrix, θ ∈R the angle of rotation and U the matrix (the element of the

Lie algebra) generating the rotation.

The full form can be seen in:

The ’logarithmic map’:

log(R) =
θ(R−RT )

2sinθ
, θ = cos−1

(
trace(R)−1

2

)
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Together with the Rodrigues rotation formula, it allows us to effectively calculate the intrinsic

distance and the projections to subgroups, which are the important components of the

proposed ICCA method.

In 3D rotation, the movement in lie algebra space is described by its Euler vectors x,y,z

and its angle θ . The lie algebra matrix is represented as:

R =

 0 −z y
z 0 −x
−y x 0

 (32)

From this, we can use exponential mapping 31 to get:

R =

1−2s2 +2x2s2 2xys2−2zsc 2xzs2 +2ysc
2xys2 +2zsc 1−2s2 +2y2s2 2yzs2−2xsc
2xzs2−2ysc 2yzs2 +2xsc 1−2s2 +2z2s2

 (33)

Where, x,y,z are the Euler vectors, s is sin θ

2 and c is cos θ

2 respectively.

From this, we can map the Euler rotations into the group space, where we can intrinsically

create 3D rotational movement. We can see the lie group representation of the 3D rotation in

Fig. 7.
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