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ABSTRACT 

REMOTE SENSING WITH AIRBORNE INFRARED THERMOGRAPHY FOR 
ASSESSMENT OF LANDSCAPE SCALE WILDFIRE SPREAD AND INTENSITY 

by Christopher Charles Giesige 

Wildland fire is one of the most complex environmental physical processes to quantify. 

The way in which we observe and measure wildland fire is critical in understanding how 

these processes drive fire dynamics. Fire behavior can be observed in several ways including 

the use of ground sensors and remote sensing packages aboard aircraft and satellites. 

Airborne sensors provide high spatial resolution and can provide high temporal resolution. 

Infrared thermography takes advantage of radiant heat transfer allowing for the study of fire 

characteristics such as fire spread and intensity. Aircraft observations utilizing infrared 

cameras have been a well-established method of fire observation, yet there is still a 

significant lack of comprehensive data available. Presented in this research are several 

advances in the use of infrared remote sensing techniques to evaluate fire behavior. First, a 

synthesis of knowledge and methods regarding the use of infrared camera systems to 

measure fire behavior is discussed and analyzed. Second, is the use of airborne infrared data 

collected during tactical firefighting operations to develop an automated method of extracting 

active fire edges for fire spread analysis. Third, is an analysis of high-resolution fire behavior 

data collected during several wildfires in the 2022 fire season and the new methods used to 

process the images, calculate fire radiative power, and evaluate fire spread. These methods 

are a contribution to the advancement of being able to use operational firefighting data for 

research applications, furthering automated methods of processing large data quantities to 

evaluate fire spread, and evaluating high-resolution landscape scale wildfire behavior.
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Chapter 1 

Synthesis of Knowledge and Methods Regarding the Use of Infrared Camera Systems 
to Measure Fire Radiative Properties and Rate of Spread 

 
1.1 Introduction 

Wildland or vegetation fires are non-structure fires that burn in natural fuels and can be 

distinguished into two types: prescribed fire used for ecosystem management and field 

experiments, and wildfires which are unplanned fires with ignitions from human or lightning 

causes. Fire research during both prescribed fires and wildfires have been used to model the 

benefits and effects fires have in an ecosystem, how they interact with surrounding 

environments and atmospheres, and how they impact our society. During the past several 

decades advances in our knowledge of wildland fires have administered improved fire 

behavior modeling efforts utilizing fire’s heat transfer mechanisms as a major component.  

Remote sensing has become an established and increasingly popular method to study 

wildland fires by means of observing radiant energy (radiant heat) produced by the fire, 

where the radiative component can be effectively measured.  The use of remote sensing to 

evaluate distinct active fire properties can fall into two main applications: detecting actively 

burning areas and estimating radiative energy from thermal imagery (Lentile et al. 2006). 

Current research uses infrared sensors tailored to the mid-wave and long-wave portion of the 

infrared spectrum (Wooster et al. 2013, O’Brien et al. 2016) as these wavelengths are most 

useful for active fire detection over a range of fire temperatures and intensities (low 

intensity/smoldering and high intensity), identifying fire fronts, estimating the amount of fuel 

combusted, and smoke emissions. Remote sensing methods, especially at higher resolution, 

can be used to measure different fire behavior characteristics such as rate of spread (ROS) 
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and spotting, the amount of biomass consumed, and quantifying fireline intensity (Riggan 

and Tissel 2009).  

Several methods have been developed that utilize remote sensing to calculate the radiant 

energy release by a fire defined as the fire radiative power (FRP) (Wooster et al. 2005). 

When integrating FRP with time, the derived relationship is fire radiative energy (FRE). 

There are several ways of measuring FRP: by use of ground radiometers with nadir-viewing 

or oblique viewing angles mounted on platforms several meters off the ground (O’Brien et al. 

2016), airborne sensors mounted on remotely piloted aircraft systems (RPAS) (Dickinson et 

al. 2016), fixed-wing and rotary aircraft (Paugam et al. 2013) with a specified viewing angle 

and lens, and spaceborne sensors attached to satellites. Most research using the FRP method 

has focused on the use of spaceborne sensors, using airborne and ground sensors to help 

validate spaceborne measurements, and identify different methods and approaches to 

measure fire characteristics. However, there is a need for both the collection of more high-

resolution data and the collection of more data from landscape scale wildfires, as most 

airborne infrared data has been collected during prescribed fire experiments. 

The absence of readily available high-resolution comprehensive wildfire datasets, along 

with the limitations in advanced methods to process those datasets, has hindered the progress 

of being able to accurately forecast fire behavior. The subsequent analyses in this paper aim 

to enhance the development of processing methodologies adept at discerning fire behavior 

characteristics from fire radiative properties across diverse wildfire datasets. Successful 

refinement of these processing methods will lead to more accurate estimations of active fire 
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edge progression at fine scales and have the potential to contribute to the validation of 

numerical fire models.   

1.2 Physics of remote sensing 

Fire is an uncontrolled chemical reaction that undergoes a sustainable combustion 

process evolving from the heat and oxidation of a fuel source. Fire itself releases heat, light, 

and reactant products. The role of heat transfer mechanisms involves both sustaining 

combustion and the fire’s interaction with the environment. In wildland fires, convection and 

radiation are the two significant heat transfer processes responsible for fire propagation and 

consumption of fuel sources, mainly vegetation.  

Appropriate wavelengths to measure fire’s radiative properties can be distinguished by 

the relationship between radiation intensity, wavelength, and temperature. Planck’s Law 

describes the radiance absorption and emittance of an object considered to be a blackbody – 

an object superlative in absorbing and emitting all of the radiant energy provided to it. 

Planck’s Law was derived from the relationship between energy and frequency at a given 

wavelength for all wavelengths using Planck’s constant, which can be written in terms of 

blackbody emissive power (Zhang et al. 2016): 

𝐵𝜆,𝑇 =
2𝜋ℎ𝑐2

𝜆5 ∙
1

𝑒𝑥𝑝

ℎ𝑐
𝜆𝑘𝐵𝑇−1

  (1) 

where λ is the wavelength, h is Planck’s constant 6.626x10-34 (m2 kg / s), c is the speed of 

light, kB is the Boltzmann constant 1.3808x10-23 (m2 kg / s2 K), and T is the absolute 

temperature. The spectral radiance by a blackbody with temperature (T) is (Johnson 2017) 

𝐵(𝜆, 𝑇) =
𝐶1𝜆−5

𝜋(𝑒𝐶2/𝜆𝑇−1)
  (2) 
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where C1 and C2 are the Planck constants 3.741832x10-16 (W/m2) and 1.438786x10-2 (m∙K).  

This relationship can be used to determine the thermal and background radiance to 

calculate a fire’s fractional area and its temperature within a pixel. With Lλ as the radiance at 

wavelength λ, ffire is the fire fractional area, fbackground is the background fractional area, 

B(λ,T) is the Plank function, and Tbackground is the temperature of the background (Dennison et 

al. 2006), the radiance can be calculated as, 

𝐿𝜆 = 𝑓𝑓𝑖𝑟𝑒𝐵(𝜆, 𝑇𝑓𝑖𝑟𝑒) + 𝑓𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑𝐵(𝜆, 𝑇𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑)  (3) 

The intensity that is emitted from an object depends on the temperature and wavelength 

of the radiated energy. Wien’s Displacement Law expresses that the higher the amount of 

radiant heat emitted by an object, the shorter the wavelength it emits at and is given by: 

𝜆𝑚𝑎𝑥 ∙ 𝑇 = 𝑏  (4) 

where λmax is the wavelength of the emission peak, T is the absolute temperature, and b is the 

constant 2897.8 (µm K). Integration of Plank’s Law provides a relationship between 

temperature and radiation emitted by an object established as the Stefan-Boltzmann Law,  

E = σT4  (5) 

where E is the energy flux, σ is the Stefan-Boltzmann constant 5.67x10-8 (W/m2∙K4), and T is 

the absolute temperature (Zhang et al. 2016). Equations 1-5 are used to determine which 

spectral band passes to use in measuring wildland fires based on their temperatures.  

Typical temperatures for wildland fires will range between 1000-1500K (Dennison et al. 

2006), but temperatures from fires can vary from 675K for smoldering with observations 

extending to 1600K in the flaming front (Riggan et al. 2004, Wooster et al. 2005). Given 

these values, fire emits radiant energy in the visible (400-700 nm), near-infrared (NIR) (0.75-
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1.0 μm), short-wave infrared (SWIR) (1-2.5 μm), mid-wave infrared (MWIR) (3-5 μm), and 

long-wave infrared (LWIR) (8-14 μm) bands of the electromagnetic spectrum. Remote 

sensing utilizes this knowledge to make observations in both the visible and infrared regions. 

However, several conditions need to be considered: the reflectance wavelengths of the fire 

background including vegetation, soil, and water; reflectance of solar radiation during the 

day; reflectance and emittance of combustion products such as hot gasses, aerosols, and 

smoke; and atmospheric absorption. Because of the background temperature and 

wavelengths emitted by other objects in the visible, NIR, and SWIR (hot gasses and soot), it 

is better suited to measure wildland fires using the MWIR and LWIR bands; although there is 

a strong emittance by CO2 at 4.3μm (Johnston et al. 2014). MWIR allows for capturing fire at 

higher temperatures and peak emittance, while LWIR allows for capturing fires at more 

ambient temperatures (Allison et al. 2016) to be used in comparison with the MWIR band. 

Measurements of wildland fires using spaceborne and airborne sensors account for so-

called “atmospheric windows”, which reside due to the differences in absorptivity of certain 

wavelengths by atmospheric molecules. These windows are ranges where the atmosphere has 

the highest transparency and certain portions of the electromagnetic spectrum can penetrate 

the atmospheric layer. Most notable atmospheric windows lie within the visible to SWIR      

( ̴ 0.4-2.5μm), MWIR (  ̴ 3.0-5.0 μm), and LWIR (  ̴ 8.0-14.0 μm) (Agueda et al. 2010). As 

described earlier, these windows correspond appropriately with wavelengths detectible 

during wildland fires. 

1.3 Sensors and methods used in measuring fire radiative characteristics 
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Use of remote sensing infrared thermography (Allison et al. 2016, Johnson 2017, Hulley 

et al. 2019) and its utilization aboard aircraft to detect and measure wildland fire dates to the 

1960s (Wilson et al. 1971) where it was found that airborne infrared thermography was a 

useful approach to active fire detection. However, their use as a proponent for data collection 

and fire retrieval has been limited by their ability to be readily available.  

Ground sensors with nadir-viewing or oblique viewing angles are also used in prescribed 

burns denoted as “true” surface values because of their proximity to surface conditions. They 

are used in lab and field experiments where the cameras can be mounted on towers or lifts 

and placed in the burn area location before fire ignition (O’Brien et al. 2016), but their use is 

also limited in wildfires as their placement needs to be established beforehand. 

In contrast, the use of spaceborne sensors aboard satellites such as the National 

Aeronautics and Space Administration’s (NASA) Terra and Aqua Moderate Resolution 

Imaging Spectroradiometer (MODIS), the National Oceanic and Atmospheric 

Administration’s (NOAA) Visible Infrared Imaging Radiometer Suite (VIIRS), and NOAA’s 

Geostationary Operational Environmental Satellite (GOES) increased due to their consistent 

pass over rates and large swaths which can easily match temporally to active fires. MODIS is 

one of the most important and most used because of its approximate 500K saturation in its 

MIR band (Peterson et al. 2013) with the latest collection (Collection 6) using an integrated 

approach for its FRP retrieval (Giglio et al. 2016). In application to fire behavior, FRP can 

estimate fire intensity by calculating the amount of vegetation consumed and rate of smoke 

emissions.  
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Among the most common FRP retrieval approaches are a bi-spectral method (Dozier 

1981, Zhukov et al. 2006, Peterson et al. 2013, Schroeder et al. 2014) and a single-band mid-

infrared (MIR) method (Wooster et al. 2003, 2005; Dickinson et al. 2016). The coarser 

resolution of satellites indicates that a sub-pixel approach is needed because of major errors 

in a satellite’s point spread function when estimating brightness temperature, especially from 

lower intensity or weak signal fires (Dickinson et al. 2016). Dozier (1981) developed a bi-

spectral sub-pixel approach applied to the Television and Infra-Red Observation Satellite -N 

(TIROS-N) satellite series infrared bands of the Advanced Very High Resolution Radiometer 

(VHRR) aboard the NOAA-6 satellite for measuring sea surface temperature, deemed the 

“Dozier” method. The bi-spectral approach uses both the mid and long-wave infrared bands 

to allow discrimination of unwanted reflectance characteristics. A sub-pixel approach allows 

for distinguishment between radiant temperatures of two temperature fields in a pixel at sub-

pixel resolution. 

Several advancements to the Dozier retrieval have been undertaken including the higher 

resolution sensor Bi-Spectral Infrared Detection (BIRD) satellite (Zhukov et al. 2006) where 

pixel clustering was applied to the fire detection algorithm during prescribed fires and 

estimates of FRP were effectively calculated to within +30% for 75% of fires. Peterson et al. 

(2013) improved the FRP sub-pixel retrieval using the bi-spectral method by calculating the 

FRP over the fire area (FRPf) instead of the pixel area (FRPp) where large and small fires 

with different intensities can be distinguished. Airborne infrared data measured by the 

Autonomous Modular Sensor (AMS) was compared to MODIS (collection 5) measurements 

of FRP and found to be highly variable unless errors in MODIS fire detection were corrected. 
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A relationship and diagnosis of the errors are given in part two of the paper series by 

Peterson and Wang (2013). 

While using a bi-spectral approach, Schroeder et al. (2014) found a strong correlation 

among ground and airborne sensor fire retrieval data (<1% peak radiant heat flux error), 

where correlation between airborne and spaceborne FRP measurements was variable (26% in 

some cases and 10% after error corrections in other scenarios). The weak relationship 

between airborne and spaceborne sensors is in part because satellites may contain larger 

amounts of error in FRP estimates due to smoke and cloud cover or pixel point spread 

functions. 

The bi-spectral method may contain errors from either poor co-registration or different 

atmospheric attenuations between multiple bands, so a physical single-band radiance method 

that isolates a fire’s signal in the MIR region was established (Wooster et al. 2003, 2005). 

The MIR method was developed based on a pixel’s spectral radiance instead of brightness 

temperature for calculating the FRE from FRP and was used in comparisons between 

MODIS (single-band approach) and BIRD (bi-spectral approach). Wooster et al. (2003) 

found values of FRE to be within 15% between MODIS and BIRD of near-simultaneously 

collected fires in Sydney, Australia of January 2002. A sensitivity analysis for the method is 

found in Wooster et al. (2005) where the MIR radiance method was validated using ground 

sensors. An in-depth synthesis of knowledge for satellite retrieval methods of FRP can be 

found in Wooster et al. (2021). 

Field research campaigns have been designed for the extensive capture of wildland fire 

data while utilizing ground and airborne equipment. During FireFlux II (Clements et al. 
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2014, 2019) infrared cameras were mounted on towers and a helicopter providing detailed 

capture of the fire spread with simultaneous measurements of fire-atmosphere interactions. 

The RxCADRE (Prescribed Fire Combustion and Atmospheric Dynamics Research 

Experiment) 2011 and 2012 campaigns are one of the most comprehensive wildland fire data 

acquisition research expeditions to date. Small plots (<1 ha) to large blocks (>100ha) at the 

landscape scale were burned including both forested and non-forested landscapes, and 

several remote sensing research teams present their findings. Patterns of fire spread were 

examined by nadir and oblique ground LWIR sensors using the Stefan-Boltzmann law to 

estimate FRP and assess fire behavior (O’Brien et al. 2016). Patterns of fuel consumption 

were examined using ground LWIR sensors and the Wildfire Airborne Sensor Program 

(WASP) LWIR sensor to derive fire radiative power/energy density (FRPD/FRED) (Hudak 

et al. 2016). Dickinson et al. (2016) assessed measurement strengths and weaknesses of FRP 

using ground and RPAS sensors for small plots, and airborne (WASP) and spaceborne 

(MODIS and VIIRS) sensors for large blocks (Dickinson et al. 2016). 

O’Brien et al. (2016) found similar trends in FRP between the nadir and oblique views 

with the oblique camera measuring slightly higher values, reflecting the heterogeneity in 

detailed fireline intensity and geometry.  In Hudak et al. (2016) temporal resolution of the 

airborne data was low and FRED was underpredicted compared to ground observations. 

However, the predicted FRED and fuel consumption observations across sensor types 

corroborated the 1:1 relationship between FRE and biomass combusted. Due to low 

experimental replication Dickinson et al. (2016) remark little can be said about precision, 

accuracy, and bias in their evaluation. Comparisons of FRP between ground sensors and 
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RPAS were highly variable and comparisons between other sensors were also found to be 

variable. 

It is worth noting that some sources of error in the collection of fire retrieval data and 

estimating FRP are not a function of the platform (ground, airborne, satellite) used, but rather 

a function of the sensor or method used (radiance, MIR, bi-spectral, etc.). This might include 

oversaturation of a sensor in a particular wavelength, choosing a bandpass affected by 

reflected solar radiation or emittance of hot gasses, poor co-registration between multiple 

sensors, and making blackbody/graybody emissivity (effectiveness of a body to emit thermal 

radiation) assumptions. For example, Dickinson et al. (2016) found little correlation between 

ground, RPAS, airborne, and satellite sensors with errors in calculating FRP mostly due to 

sensor properties.    

Attempts at calculating fire ROS, either by a semi-automated fireline detection algorithm 

(Paugam et al. 2013) or fully automated active fire edge detection algorithm (Valero et al. 

2018), and fireline intensity determined from ROS and FRP (Johnston et al. 2017) have been 

constructed. Brightness temperature and radiance estimate the arrival time of a fire front at a 

pixel, denoted as when the brightness temperature of the pixel exceeds 600k (Paugam et al. 

2013) or 773k (Johnston et al. 2017), then at a time during fire propagation pixels that 

identify the fire front are used to calculate ROS. This method was validated by Paugam et al. 

(2013) during laboratory experiments. Ononye et al. (2007) used differences between burned 

and unburned areas from multispectral airborne sensors by utilizing the Normalized 

Difference Vegetation Index (NDVI) and Normalized Difference Burn Ratio (NDBR) to 

calculate ROS, automatically extracting fireline characteristics. 
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Paugam et al. (2013) applied the method to bi-spectral infrared sensors aboard a 

helicopter during a prescribed burn and successfully estimated ROS for more than half of the 

sensor pixels during the fire. FRP was also calculated and there was little to no correlation 

between ROS and FRE. Johnston et al. (2017) compared several different FRP methods to 

calculate fire intensity from only remotely sensed data using the MIR radiance method. It 

was found that the fire radiative energy density-rate of spread (FRED-ROS) method 

performed more significantly compared to the other methods and that ROS was successfully 

calculated from the high resolution (0.13m) sensors. Fireline intensity (ROS) fully described 

fire perimeter behavior. Valero et al. (2018) applied the canny edge detector operator to a 

fully automated active fire edge detection algorithm in thermal images that was successfully 

tested over a range of laboratory and experimental burns. The canny edge detection algorithm 

was first validated by manual mapping of fire fronts, then applied to the real-time automated 

algorithm. After an active fire perimeter was established, fire advance to the normal of the 

fireline was used to calculate ROS.   

1.4 Conclusion 

A consistent theme within the literature is that high-resolution airborne infrared data is 

needed to both validate spaceborne sensor measurements and provide data capable of being 

used for fire behavior modeling. Airborne sensors are often used as means to verify 

spaceborne measurements by comparison (Peterson et al. 2013, Schroeder et al. 2014, 

Dickinson et al. 2016) yet can provide higher resolution data usable to infer key aspects of 

fire behavior (Radke et al. 2000, Riggan et al. 2004), such as fireline intensity and ROS 

(Paugam et al. 2013, Valero et al. 2018, Wooster et al. 2021), that spaceborne measurements 
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cannot. Experimental and laboratory burns provide valuable information into the intricacies 

of fire behavior, but often do not burn under the same conditions that wildfires do. This 

suggests that in order to improve fire behavior analysis, more observations need to be 

acquired during landscape scale wildfires under changing environmental conditions. 
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Chapter 2 

Automated Extraction of Active Fire Edges From Tactical Infrared Observations of 
Wildfire 

 

2.1 Abstract 

Remote sensing of wildland fires has become an integral part of fire science due to its 

multiple applications, such as monitoring active fires, evaluating fire effects, estimating fire 

emissions, and assessing fire risks. Airborne sensors provide high spatial resolution and can 

provide high temporal resolution enabling fire behavior monitoring at fine scales. Fire agencies 

frequently use airborne long-wave infrared (LWIR) imagery for fire monitoring and to aid in 

operational tactics and decision-making. While fire tactical remote sensing systems carry 

distinctions from scientific instruments, operational support data has the capacity to aid 

scientific research and fire behavior modeling efforts. However, the potential of this data for 

scientific use requires specialized data processing pipelines that are not presently accessible. 

In this work is presented an automated thresholding algorithm coupled with edge detection that 

delineates active fire edges and is applied to georeferenced LWIR image mosaics. Several 

automated thresholding and edge detection methodologies were investigated. The proposed 

method, thresholding around the mean pixel intensity plus canny edge detection, outperformed 

the other three algorithms, successfully extracting active fire edges over a wide range of image 

complexity, and was then compared to manually annotated mosaics to compute five 

performance metrics. The algorithm was tested on tactical LWIR imagery acquired during 

several fires in California in 2020: the Oak fire in Mendocino County, the Glass fire in Napa 

and Sonoma Counties, the Slater fire in Siskiyou County, California and Josephine County, 
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Oregon, and the Creek fire in Fresno and Madera County. These satisfactory results contribute 

to the integration of infrared fire observations captured during firefighting operations into the 

scientific research of fire spread analysis and advancement of fine-scale fire behavior 

modeling. 

2.2 Introduction 

Recent changes in wildland fire conditions and behavior have brought on new challenges 

in analyzing and modeling their dynamics. Evolution of extreme fire behavior attributes such 

as fire spread and intensity (Duane et al. 2021, Hantson et al. 2022) are further leading to unsafe 

conditions for firefighting operations and the public interface, accentuating the need for 

accurate fire behavior predictions. The fire spread component is at the foundation of fire 

behavior models, and the ability to improve model performance is a function of the data that 

is available.  

Remote sensing of wildland fires has become an integral part of fire science due to its 

multiple applications, such as monitoring active fires, evaluating fire effects, estimating fire 

emissions, and assessing fire risks. Methods of calculating fire spread with ground devices and 

ground thermal sensors (Stephens et al. 2008, Rudz et al. 2009) provide ground truth 

measurements during laboratory and prescribed fire, while visual and infrared remote sensing 

camera systems provide continuous capture of a fire and a more flexible means of measuring 

fire spread when placement of ground devices may not be convenient or accessible. Airborne 

sensors provide a higher spatial resolution and can provide higher temporal resolution than 

spaceborne sensors, thus enabling fire behavior monitoring at finer scales. Therefore, airborne 



15 
 

remote sensing data of fire behavior is of the utmost importance to improve the understanding 

of extreme fire behavior and support the development and validation of fire behavior models.  

Advanced techniques delineate fire spread from camera imagery by means of image 

processing using feature extraction or image segmentation. Several attempts to find effective 

ways of identifying fire vs non-fire pixels in visual images during laboratory and prescribed 

fires use color spacing segmentation with traditional and machine learning methods (Rudz et 

al. 2013, Toulouse et al. 2016). While segmenting fire pixels in the visual spectrum is useful 

under clear conditions, background pixels similar enough in color to fire and the presence of 

smoke can both obscure differentiating between fire vs non-fire pixels and fire edges.  

Infrared radiation offers the advantage of having higher transmissivity through smoke and 

researchers have taken advantage of this by utilizing the mid-wave (Wooster et al. 2013) and 

long-wave infrared (O’Brien et al. 2016) spectrums to evaluate fire radiative power (FRP) and 

rate of spread (ROS) (Wooster et al. 2005, Riggan and Tissel 2009, Paugam et al. 2013, Stow 

et al. 2014). Fire spread has been analyzed from spaceborne sensors such as the Moderate 

Resolution Infrared Sensor (MODIS, Loboda and Csiszar 2007) and Landsat Thematic Mapper 

(LTM, Viedma et al. 2015). The consistent availability of spaceborne sensors makes them 

useful in pre- and post-fire monitoring, however their low temporal resolution and 

susceptibility to smoke interference make them less suitable for measuring fine-scale fire 

progression. Furthermore, the low spatial and temporal resolution of spaceborne sensors makes 

them inadequate for performing and analyzing real-time rate of spread calculations applied to 

active fire edges needed for operational fire behavior forecasting.  
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Temperature thresholding used in laboratory or field experiments is an efficient 

segmentation method, where a threshold is applied to pixel brightness temperature (Pastor et 

al. 2006, Martinez-de Dios et al. 2011, Paugam et al. 2013, Johnston et al. 2017). Fire front 

arrival time is designated as the time when these thresholds are exceeded for the first time, and 

ROS is calculated from the distance traveled. Automated edge detection thresholding 

techniques were developed for fire imagery by Ononye et al. (2007) and Valero et al. (2017, 

2018). Ononye et al. (2007) used the Normalized Difference Vegetation Index (NDVI) and 

Normalized Difference Burn Ratio (NDBR) from images captured by airborne multispectral 

and hyperspectral sensors during wildfires. Valero et al. (2017, 2018) used canny edge 

detection to distinguish the active fire edges with real-time processing in laboratory and field 

experiments. In other studies, fire fronts and perimeters were manually delineated in 

Geographic Information System (GIS) from landscape scale wildfires (Stow et al. 2014, 2019, 

Schag et al. 2021) to capture fine-scale wildfire perimeter progression.    

Currently, the extraction of fire pixels, fronts, and perimeters from infrared images takes 

advantage of image characteristics such as temperatures with an underrepresentation of 

analysis at the landscape scale. Methods used to delineate fire spread at the landscape scale, 

either utilized a combination of hyper and multispectral sensors not reasonable for generalized 

use or manually delineated fire front progression. While these methods have great use and yield 

satisfactory results, they are inefficient for working with large datasets and specialty equipment 

is not reasonable to deploy during operational fire monitoring. Except for Valero et al. (2018) 

where the algorithm was applied to 6600 frames in different scenarios, other techniques have 

not been as extensively tested. 
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Fire agencies frequently use airborne LWIR imagery for fire monitoring and to aid in 

operational tactics and decision-making. This source of data, if managed and processed 

properly, can be a significant addition to research data collected during small to medium-scale 

fire field experiments such as FireFlux II (Clements et al. 2014) and the Prescribed Fire 

Combustion and Atmospheric Dynamics Research Experiment (RxCADRE, Dickinson et al. 

2016, Hudak et al. 2016). However, the imaging systems deployed during fire emergencies for 

tactical decision support are often non-radiometric, which hinders the retrieval of fire behavior 

metrics. Furthermore, the non-uniformity of landscape scale fires creates challenges in the 

image processing workflow, for example when setting threshold parameters, which are 

aggravated by disparities in the imaging sensor or the conditions they are deployed under. 

In this work is presented an automated thresholding algorithm coupled with edge detection 

that delineates active fire edges at the landscape scale and is applied to georeferenced LWIR 

frames. The algorithm was tested on tactical LWIR imagery acquired on multiple fires in 

California in 2020: the Oak fire in Mendocino County, the Glass fire in Napa and Sonoma 

Counties, the Slater fire in Siskiyou County, California and Josephine County, Oregon, and the 

Creek fire in Fresno and Madera County. Images portrayed fire activity of various intensities 

and geometries. This analysis seeks to establish the capability to identify active fire progression 

using basic thermal images by singular means of gradient thresholding not dependent on 

temperature or other fire characteristics. Successful implementation of these methods can then 

later be used to calculate ROS. While there are many ways to utilize image processing 

techniques, several common thresholding and edge detection methods will be discussed, along 

with the tailored method that produced the best results. Common thresholding and edge 
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detection techniques are investigated in an attempt to keep the active fire edge algorithm as 

simple and practical as possible while taking processing time into consideration. More 

advanced techniques may not be appropriate if this processing is to be performed over very 

large datasets or for operational purposes.  

2.3 Background 

2.3.1 Thresholding and edge detection 

Thresholding is a standard method of image segmentation and a way of converting images 

into binary form by isolating features in an image. Conversely, edge detection techniques are 

capable of extracting image object contours. These approaches are advantageous when 

working with non-temperature-dependent images. 

Valero et al. (2018) found canny edge detection to perform significantly better than other 

gradient masks and edge detection methods at identifying only the active fire fronts, so that 

method was further explored in this study. Canny edge detector (Canny 1986) first applies a 

Gaussian filter to smooth the image, detects main edges and discards non-edges, then uses 

upper and lower thresholding values to identify strong edges and weak edges. Strong edges are 

considered values above the upper thresholding value and weak edges are considered when 

they lie between the upper and lower thresholds and are connected to strong edges. Values 

below the lower threshold are discarded.  

OTSU’s method of binarization (Otsu 1979) is a common segmentation method that 

analyzes an image’s histogram by minimization of weighted variance to obtain a threshold. 

Pixel values above that threshold are given one value and pixel values below the threshold are 

given another (0 and 1 for example). Essentially, OTSU’s method identifies two clearly 
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expressed pixel intensity peaks in the histogram and separates the image into two clusters based 

on the determined threshold value. Multi-thresholding (Huang et al. 2011) allows for the 

identification of multiple threshold values to classify more than two clusters of pixel intensity 

into brightness regions (Arora et al. 2008). 

2.3.2 Morphological functions 

In complex images thresholding and edge detection may exclude pixels required to depict 

the full object, include pixels outside the wanted perimeter, and may result in broken or non-

continuous edges. This can happen when pixel intensities are similar to those of background 

pixels. Morphological operators are useful ways of dealing with these discrepancies (Ononye 

et al. 2007) by providing attribute outputs of active elements inside an image. The erosion 

operation erodes the outer surface of the foreground object (the fire area) where the eroded 

boundary is turned to zero and white noise is discarded. Dilation increases the size of the 

foreground object increasing the size of the object area. Since erosion and dilation are often 

performed together in image analysis, a closing feature utilizes both transformations by first 

applying the dilation operation and then the erosion operation. Filling binary holes is a 

transformation based on dilation where background pixels of a binary image inside an 

identified area are connected and changed to foreground pixels until the boundary is reached. 

Morphological operators can iterate as many times as necessary. Mathematics and detailed 

descriptors of morphology can be found in Gonzalez and Woods (2002). 

2.3.3 Structure analysis 

Detecting edges in complex images often results in more than one identified edge. For 

instance, some of the images available for this study do not have a distinguished flaming zone 
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such as the one that can be observed in laboratory or prescribed burns where only one or two 

strong gradients between fire pixels and non-fire pixels exist. Instead, multiple strong gradients 

may exist inside the fire area making it difficult to outline only a single fire edge. This requires 

unwanted edges to be removed. Structural analysis and shape descriptors compute connected 

components of an image, assign a label, and produce statistics for each label. Statistics 

produced for each component are then used to eliminate edges of certain lengths.  

2.4 Methods 

2.4.1. Remote sensing data 

Tactical LWIR imagery throughout the 2020 fire year in California was requested by the 

California state fire agency Cal Fire to aid in wildfire management operational decisions, 

where the data was acquired by various vendors and logged into a database. Features such as 

fire perimeters, heat sources, and aircraft orientation were also stored with the LWIR 

imagery for most of the associated flights taken. The 2020 fire season was one of the most 

intense fire years California has faced with over 4.3 million acres burned, 11 thousand 

structures destroyed, and 30 confirmed losses of life recorded by Cal Fire 2020 

(https://www.fire.ca.gov/incidents/2020/). Within the database, 59 fires were identified 

representing fires of various intensities in varying topography and vegetation, including data 

from some of the most significant fires: August Complex, North Complex, CZU Complex, 

Glass, Creek, SQF Complex, and Apple fires. Images recorded during the fires were 16-bit 

non-radiometric thermal infrared, with a spatial resolution of 640x512 pixels. Images were 

converted to 8-bit type before processing to accommodate the input requirements of some 

existing image processing libraries. 
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Several fires from the database were selected for analysis. These included the Glass fire, 

Oak fire, Creek fire, and Slater fire, and were selected based on either request from Cal Fire, 

or fires where high temporal resolution observations were available. In constructing the 

active fire edge contouring method, images from six flights during the Glass fire and five 

flights during the Oak fire were used as they provide a good representation of image 

diversity. To build the algorithm, images from individual flights were separated for each fire, 

and images where fire was not present were discarded. Based on visual perception and 

histogram inspection other images meeting the following criteria were also discarded: images 

where fire pixels permeated the entire frame as not to have any front or perimeter edge, 

images scarce in fire pixels where fire geometry was unable to be distinguished, or images 

that did not contain enough pixels with intensities above background pixels. Examples of 

images used from the database can be seen in Figure 1. Three Oak fire flights, one Slater fire 

flight, and one Creek fire flight were used in assessing the automated method performance.  

2.4.2 Thresholding and edge detection processing 

Identifying fire pixels and the fire area is challenging because the range of pixel 

intensities and fire geometry can be highly variable from flight to flight and fire to fire. Low-

intensity fire pixel values can be proximal to background pixel intensities and clearly defined 

maximum intensities are not always present. Furthermore, background pixels of the same 

intensity can reside both inside and outside of the fire area. Therefore, the fire area is defined 

as an area that contains either a group of fire pixels or a mixture of fire and background 

pixels if a cluster of background pixels is within the fire geometry. When segmenting images 

into the active fire area to be edged, thresholding parameters are set to meet this definition 
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distinguishing between the fire area and non-fire area. This definition allows the automated 

algorithms to be evaluated consistently across all images. Smaller clusters of fire pixels 

outside the main fire area are also targeted as they may relate to spotting activity. Active fire 

edges are considered the perimeter of the main fire area and stand-alone clusters (possible 

spotting) in each frame. 

 
Figure 1. Four LWIR images captured during the 2020 Oak (a, b, c) and Glass (d) fires 
in California, USA. Pixels that are darker are lower in intensity representative of 
background values and lower intensity fire, whereas pixels that are white are of higher 
intensity representative of more intense areas of the fire. These images provide a good 
representation of how the fire geometries and fire area intensities can vary by image. 
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Several automated thresholding and edge detection methodologies were investigated. 

Four combined methods, as described in sections 2.3.2.1, 2.3.2.2, 2.3.2.3, and 2.3.2.4, were 

constructed using the canny edge detector, OTSU’s binarization, and thresholding about the 

mean pixel intensity. Each image and frame were processed individually.  

Unless otherwise stated, a Gaussian filter is first applied before thresholding and edge 

detection for smoothing and noise reduction using a 3x3 matrix and a standard deviation 

determined by the matrix kernel. In this instance, the filter takes the kernel size (ksize) in the 

X direction and the Y direction, and computes the standard deviation (sigma) for each X and 

Y as, 

𝑠𝑖𝑔𝑚𝑎 = 0.3 ∗ ((𝑘𝑠𝑖𝑧𝑒 − 1) ∗ 0.5 − 1) + 0.8  (6) 

2.4.2.1 Canny edge detector 

When only applying the canny edge detector to images, variations of lower and upper 

thresholding values were tested until two precise values of 3 and 7 were determined to 

provide the best results. Threshold values higher and lower than the selected values excluded 

pixels considered to belong to the active fire edge, or extensively over-edged fire pixels 

including pixels belonging to the background. The size of the Sobel kernel used to find the 

image gradients in the canny operator was set to 3. A closing operation was then performed 

with a 5x5 matrix followed by a binary filling operation to connect non-continuous edges. 

The canny edge detector was then reapplied a second time after the closing operation with 

different lower and upper threshold values of 0.3 and 0.7. Edge components under 200 pixels 

in size were removed using connected component statistics to provide only the active fire 

edge.   
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2.4.2.2 OTSU’s binarization followed by Canny edge detector 

Upon inspection of various image histograms and their intensity peaks, OTSU’s method 

was applied in three ways to deal with the heterogeneity and inconsistencies of the 

histograms. First OTSU’s thresholding was applied without any manipulation to the 

histogram, the second variation applied histogram equalizing and then OTSU’s binarization, 

and the third variation applied histogram stretching followed by OTSU’s binarization. After 

OTSU thresholding the canny edge detector was applied to characterize the active fire edge. 

Upper and lower thresholding values used in the canny operator were found to hold any 

value < 4.4 where the lower threshold value is less than the upper threshold value. Connected 

component stats were used to remove unwanted edges smaller than 200 pixels. It was found 

that while histogram stretching and equalization improved the performance of OTSU’s 

method in some images, it declined performance in other images and, therefore did not 

enhance the overall results. Because of this, the analysis was carried out using OTSU’s 

method without any histogram manipulation.  

2.4.2.3 Multi-thresholding followed by Canny edge detector  

Marginal differences between low-intensity fire pixels and background pixels, and 

distinguishing between which background pixels to include in the fire area is a challenge 

when only a single threshold value is applied. Therefore, multi-thresholding based on OTSU 

statistics may be a more robust method. This would allow for classifying different pixel 

clusters as background pixels, low-intensity pixels, medium-intensity pixels, and high-

intensity pixels to be characterized. The thought behind this approach is that if pixel values 

could be segmented into multiple clusters of varying intensities, then values could be 
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separated into background pixels that should be included in the fire area and those that 

should not, pixels of lower fire intensity, and pixels of higher fire intensity. Groups of 

clusters can then be merged to provide a more complete fire area.  A multi-OTSU 

thresholding operation was performed with four and five classes. Each class was then 

identified as a single region, and regions containing the wanted clusters of pixels were 

combined. Canny edge detection was then used with the same structure as when applying 

OTSU’s method. Unwanted edges under 125 pixels in size were removed.  

Thresholding by four classes segmented pixel values into two sets of background pixels 

and two sets of fire pixels, essentially providing a set of background pixels and a set of fire 

pixels. This fails to provide a classification for those pixel intensities on the border of being 

background or fire, therefore it was determined that five classes were necessary to achieve 

the desired outcome. However, the processing time of segmenting a single image 

significantly increased from minutes to greater than an hour when expanding from four 

classes to five classes deeming the five-class method impractical for processing large 

datasets, so the method was carried out using four classes.  

2.4.2.4 Alternate intensity thresholding 

Here is introduced the fourth proposed method, which combines an automated 

thresholding method with canny edge detection. Following a visual analysis of 21 diverse 

image histograms from separate flights and fires, two attempts were made at identifying a 

threshold using intensity values: 

𝑇𝐻𝑝 = 𝑚𝑖𝑛𝑝 + 𝑚𝑎𝑥𝑝 ∗ 𝑏  (7) 

𝑇𝐻𝑝 =
∑ 𝑝𝑣𝑎𝑙𝑢𝑒𝑠

𝑛𝑝𝑖𝑥𝑒𝑙𝑠
∗ 𝑏  (8) 



26 
 

where THP is the threshold value, minP and maxP are the minimum and maximum pixel 

values in each image, pvalues are the pixel values, npixels is the number of pixels in an image, 

and b is a parameter. Of Eq. (7) and Eq. (8), Eq. (8) produced the best results so it was 

selected for analysis. Different values of b were investigated until the highest performance 

value of b=1.015 was selected based on visual inspection.  

From the Gaussian smoothed image, the threshold mask was applied. Two filling 

functions were used to fill the fire area followed by two iterations of dilation and another 

filling operation. This ensures there is only a single edge inside the fire area when edge 

detection is applied, otherwise multiple edges may be detected. Erosion was then applied to 

reduce any part of the fire area that protruded from the perimeter or any rogue non-fire pixels 

scattered throughout the frame. Dilation and erosion transformations were done using a 5x5 

matrix. Even though dilation was followed by erosion, the closing morphological function 

was not applied here because two iterations of dilation were necessary but only one iteration 

of erosion was necessary. Finally, canny edge detection was performed with an upper 

threshold value of 4.4 and a lower threshold of any value <4.4. Edges smaller than 250 pixels 

were removed. Figure 2 illustrates results after each principal process is applied when 

utilizing sequentially a threshold mask from equation (8), morphological operators, and then 

canny edge detection. It can be seen in Figure 2b that morphological operations are necessary 

to transition from discrete active fire edges around the fire area to a continuous edge more 

adequate for running edge detection. The final output image provides a sharp continuous line 

around the active fire edge. Figure 3 shows a block diagram outlining the various processes 

used in the four methods for identifying the fire area and active fire fronts. 
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2.4.3 Polygon functions 

Each group of raster edge pixels was translated into polygons by utilizing the polygonize 

function. By translating the edged pixels into polygons comparisons can then be made 

 
Figure 2. Progression of the processes involved in contouring active fire edges. a) is the 
original LWIR image, b) is the output of applying the threshold mask utilizing equation 
(8), c) is an output of the threshold mask after applying morphological operations, and d) 
displays the final output when applying the canny edge detector and removing unwanted 
edges. b) provides a good example of why morphological operations are necessary after 
applying a threshold mask given the gaps along the edge of the fire area. Looking at c), 
gaps in the active fire edge and area have diminished leaving a more continuous edge to 
be contoured.  

 

 
Figure 3. Block diagram showing the order of operations for the four automated 
methods tested (canny edge detection, OTSU’s binarization, multi-thresholding, and 
thresholding about the mean pixel intensity). Black boxes are the input and output, 
purple boxes represent the initial step for each method, blue ovals are the main 
thresholding or edge detection algorithm used, green soft rectangles are secondary 
analysis tools such as morphological operators, and the orange hectogon signifies the 
final step of detecting the active fire edge. 
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between the automated polygon and ground truth polygon. Due to transformations between 

raster types and polygons, not all active fire edges were converted to be continuous, therefore 

dilation was necessary. In more complex mosaics, only applying the polygonize function and 

dilation was insufficient because the fire edge still lacked continuity, unable to render a 

single polygon. Instead, an alpha shape function (a concave geometry enclosing vertices) was 

used to produce a continuous polygon. An alpha value of 0.015 was applied and holes 

created by the concave hull within the edge polygon were eliminated. For Oak Flight 3, 

several minuscule holes persisted in the polygon and therefore were closed manually without 

any new digitization. It is worth noting the extra processes used are a result of working with 

raster images and not a function of the automated algorithm. The use of the polygonize 

function and alpha shapes allows for the creation of single polygons of the edged mosaics in 

order to assess error metrics in the automated method. Manually annotated vertices were 

drawn around the main active fire edge for each of the selected flight mosaics to enclose a 

single fire area governing as ground truth. 

2.5 Results 

2.5.1 Automated methods comparison 

Applying strictly canny edge detector, OTSU’s binarization, and multi-thresholding 

produced highly variable results, working well in some cases when the fire area and 

geometry were clearly defined yet failed to produce satisfactory results in more complex 

images. In some cases, they even failed to produce satisfactory results in simple shapes with 

a clearly defined fire area. Adjustments to achieve satisfactory results fluctuated between 

modifications, i.e. while one adjustment worked well for some of the images, detail was 
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either lost or excessive in other images. Results also varied when the methods were applied 

to images acquired under different flight and atmospheric conditions. In most instances, other 

image processing operations (such as morphology) would have made no reasonable change 

in the overall performance of the method. Therefore, it was difficult to achieve input 

thresholding parameters successfully for the majority of images. 

Canny edge detector tended to over-edge images producing unwanted edges belonging to 

background pixels, not identifying edges belonging to the active fire edge, or excessively 

edging the fire area. Given the complexity of the images, especially where there is high 

intermixing of fire and background pixels inside the fire area, this is unsurprising.  

Non-homogeneity in image histograms and non-uniformity in histogram peaks posed 

challenges for the OTSU algorithm to consistently threshold the entire fire area. Images 

where fire intensity is lower will have two peaks closer together and proximal to the 

background pixels. Images where there is a larger number of high fire intensity pixels will 

have a second peak at the maximum value giving a higher degree of separation between the 

two peaks used to calculate the threshold value. Consequently, only pixels with values 

belonging to the most intense portions of the fire were thresholded and edged. Overall, 

OTSU’s method worked well for identifying high-intensity spots of the fire in an image but 

performed poorly in thresholding the entire fire area within the image and, therefore was 

ineffective in allowing for the entire active fire edge to be identified.  

Multi-thresholding successfully classified the images into four pixel intensity clusters that 

could be combined into regions of interest and produced better results than single OTSU 

thresholding. However, the four classes were unable to segment differences between wanted 
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background pixels inside the fire area and unwanted background pixels. Unreasonable 

processing speeds when using five classes are a function of the OTSU statistics (Arora et al. 

2007), and future attempts at multi-thresholding might have success implementing other 

methods. 

Automated thresholding conditional to the mean pixel intensity followed by canny edge 

detection outperformed the other three algorithms successfully extracting active fire edges 

over a wide range of image complexity. Not only did the proposed method in this study 

contour edges along the main fire perimeter in each frame, but it also contoured smaller 

clusters of fire pixels separated from the main fire area possibly indicative of spotting. Active 

fire clusters not belonging to the main fire area that were not edged are a result of having to 

remove edges below a certain size, where they may have originally been outlined, but then 

discarded when filtering edges out. In a few cases, the algorithm underperformed by 

capturing edges extending from the fire area, not capturing the full active fire edge, or 

breaking continuous segments into multiple edges. As expected, these mostly occur where no 

clear active fire edge is defined, fire pixels are speckled throughout the image, and where 

there are high mixtures of fire and background pixels.  

This method was then selected for implementation on georeferenced images where 

automated edges are compared to manually annotated edges and performance metrics are 

computed for several flights. Comparisons between final outputs of segmentation techniques 

and the original LWIR images can be seen in Figure 4. Each method was manually tailored 

to provide the best outcome, so the representative images compare the best results. Figure 5 
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provides an example of how the new method underperformed in contouring the active fire 

edge.  

 

 
Figure 4. Four methods of extracting active fire edges are compared against 
each other and to the original LWIR image. There is a clear distinction 
between the performance of the fourth method compared to the other three. 
Mean threshold plus canny edge detection is able to capture active fire edges 
throughout the diverse fire intensities and geometries. 
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2.5.2 Application of automated method  

The automated algorithm was applied to individual LWIR raster images to produce a 

binary raster image containing the fire edge and non-fire edge pixels, where they were 

georeferenced to generate a contoured mosaic of the entire fire edge as seen in Figure 6. 

Images were pre-filtered by maximum pixel value to create mosaics containing only images 

with fire. Detailed edges around the active fire perimeter were observed in the binary raster 

images also capturing spot fires, however, double edging occurred in some areas. Examining 

Figure 6, the algorithm also identifies a few isolated regions away from the main fire area 

and a curl extending from the southern aspect of the main fire geometry even though they are 

characterized as the background.  It is hypothesized that double edging is a proponent of 

inconsistent edging between concatenated images. Even though an active fire edge may be  

contoured correctly in one image, it may not be correctly contoured in a concatenated image 

if the corresponding fire area is not fluent in fire pixels. The gdal merge function also 

 
Figure 5. The original image (left) captures a distinct active fire edge extending 
from the top of the frame to the bottom of the frame. After the mean threshold 
with canny edge detection is applied (right), the method does not delineate the 
continuous active fire edge in the original image. Rather it follows gaps in the 
higher-intensity regions. 
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prevents overlaps by using data from the last image provided when multiple images overlap, 

but non-fire edge pixels are interpreted as containing “no data” and did not overlap with 

edges detected in another image. Classification of background pixels as fire pixels outside the 

active fire edge is a function of the difficulty in defining a threshold value that distinguishes 

pixels belonging to the fire area and not belonging to the fire area.    

The discrepancy in overlapping edges was solved by applying the automated edge 

algorithm to georeferenced image mosaics as displayed in Figure 7. Mosaics of the original 

LWIR georeferenced images were created in the open-source GIS platform QGIS for flights 

of selected fires. Five flights were then selected for evaluation: three flights during the Oak 

fire, one flight during the Slater fire, and a single flight capturing the Creek fire. Flights were 

 
Figure 6. A mosaic of the automated method applied to binary individual 
georeferenced single flight images during the Oak fire. When applied to 
individual images the algorithm characterizes more detail in the shape of 
the active fire edge, but segments the main fire area into multiple fire areas. 
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selected based on the continuous structure of the active fire edge which permits a more 

robust analysis.  

Figure 7a provides an example of a single flight georeferenced mosaic during the Oak 

fire, where a notion of the image complexity and how fire geometry and intermixing of pixel 

intensities present a challenging structure to work with. Figure 7c displays the performance 

of the automated algorithm after being applied to the Oak fire flight mosaic, and Figure 7d is 

the manually delineated active fire edge. By applying the algorithm to mosaics, the spatial 

reference information is retained. This change in processing order also removed the edges 

detected within the active fire perimeter (Figure 7b). Several noticeable disparities exist 

between applying the algorithm to individual images in a flight versus a flight mosaic. When 

applied to the mosaic, (Figure 7c) the main fire area becomes a single continuous polygon 

more complementary to the manually annotated mosaic (Figure 7d), whereas applying the 

method to individual images produces a sharper edge yet neglects faint intensities often 

cutting inside the fire geometry to follow more distinct intensity gradients. Second, is that 

when applied to individual georeferenced images the edge is not only sharper around the 

active fire perimeter but distinguishes between fire and smoke. In Figure 7c on the southeast 

region of the fire geometry, the contoured line follows a thin layer of smoke that extends 

from the fire edge increasing the area size.    

Two flights from the Oak fire (Oak Flight 1, 2) and one flight from the Slater fire were 

the only cases where a continuous active fire edge polygon was created without the need of a 

concave hull tool. The flight from the Creek fire, while representing the most extensive 

capture of the fire, had gaps in the active fire edge over half a mile in some cases, preventing 
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the creation of a single polygon even when alpha shapes were utilized. Because of these 

gaps, the Creek fire image was excluded from the evaluation.  

Overall, the automated algorithm displayed better performance when applied to flight 

mosaics instead of individual images, so error metrics were calculated for this process. They 

were assessed for each of the two georeferencing edged applications: when the delineated 

active fire edges were polygonized, or when the polygonize function alone was insufficient 

and polygons were created with the use of concave hull. 

 
Figure 7. a) Mosaic of a single flight taken during the Oak fire (flight 0533), b) mosaic 
built after applying the automated algorithm to individual frames, c) result of applying 
the automated algorithm to a single flight mosaic, and d) mosaic manually annotated 
active fire edge. When applied to the mosaic (c) a single continuous polygon is created in 
the main fire area and the double edging is diminished. 
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2.5.3 Performance Metrics  

Five evaluation criteria were used in measuring the performance of the automated 

algorithm: Figure of Merit (FOM, Pratt 1978) and Baddeley distance (Baddeley 1992) were 

used to assess the similarity of lines produced by the automated edging method and ground 

truth digitization, the Jaccard index (Jaccard 1901) used to measure similarity between the 

intersection and union of the two sets, spatial difference in area to provide a ratio of the 

automated area to the manually annotated area, and the difference in areas between the 

automated and manual polygons. 

FOM and Baddeley distance are common statistical evaluations that have been found 

useful in assessing segmentation contouring and in wildfire image performance, and were 

performed following the methods of Valero et al. (2018) described by Eq. (9) and Eq. (10). 

FOM characterizes the accuracy of one method against another by inspecting dislocated 

pixels with a dimensionless output value between 0-1, where a value of 1 is the best 

achievable value. Baddeley distance is a metric in meters designed to measure the 

performance between binary images comparing edged or segmented image features with the 

true image, in this case, the distance between vertices along the automated edge and 

manually edged image. FOM and Baddeley distance are calculated as: 

𝐹𝑂𝑀(𝐼, 𝐼𝑔𝑡) =
1

𝑚𝑎𝑥[𝑐𝑎𝑟𝑑(𝐼),𝑐𝑎𝑟𝑑(𝐼𝑔𝑡]
∑

1

1+𝛼·𝑑(𝑘,𝐼𝑔𝑡)2𝑘∈1   (9) 

𝐵𝐴𝐷(𝐼, 𝐼𝑔𝑡) = [
1

𝑐𝑎𝑟𝑑(𝐼)+𝑐𝑎𝑟𝑑(𝐼𝑔𝑡)
∑ |𝑑(𝑘, 𝐼𝑔𝑡) − 𝑑(𝑘, 𝐼)|𝑃

𝑘∈𝐼∪𝐼𝑔𝑡
]

1

𝑃
  (10) 
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where I is the segmentation result, Igt the corresponding ground truth (hand drawn polygon), 

card() is the cardinality of the curve, and d(k, Igt) is the minimum distance between point k 

and curve Igt. Igt·α is a constant 1/9. 

The Jaccard index, another common statistical evaluation, was also selected because of 

its simplicity and universal ability to compare the similarity between two finite sets, and is 

expressed (Costa 2021): 

𝐽(𝐴, 𝐵) =
|𝐴∩𝐵|

|𝐴∪𝐵|
  (11) 

where A and B are a polygon set. Jaccard index values range from 0-1 where 1 indicates the 

two sets are identical. Perimeter differencing provides an opportunity to inspect a non-

dimensional normalized difference between the automated active fire edge perimeter and the 

ground truth annotated perimeter, which can also provide insight as to whether the algorithm 

more commonly under-edges or over-edges. Perimeter differencing overlayed the automated 

and manual polygons to calculate the areas where they diverged. Outer differencing is where 

the automated active fire edge detection overextended the fire edge compared to the 

manually drawn edge, and inner differencing is where the automated detection contoured the 

edge inside of the manually drawn perimeter. The area of the automated edge detection 

polygon falling outside and inside the hand-drawn polygon was divided by the total area of 

the hand-drawn polygon to produce the outer and inner error, where a value of 0 indicates no 

difference between the two polygons.   

In calculating FOM and Baddeley distance metrics, only the main body of the fire area 

was taken into consideration, neglecting the smaller false detections by the automated 

algorithm. For these calculations, we are interested in how accurately the automated polygon 
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was detected compared to a manually annotated polygon. The reason for this is that the FOM 

and Baddeley metrics are comparing displaced pixels and distances in relation to the manual 

polygon, so false positives can give unreasonable performance errors, making the values 

more difficult to interpret. Jaccard index, inner and outer differencing, and area comparisons 

were all made using both correct and incorrect detections of the fire area. Table 1 includes 

metric values of the error indices for the statistics calculated in each case of the selected 

flights.  

FOM values were close to zero for both the polygonized and concave hull applications 

with average values of 0.056 and 0.078. These values imply poor performance by the 

automated method, however FOM is influenced by the overall size of the polygons, and as 

far as we know has only been applied to laboratory or experimental fires (Rudz et al. 2009, 

Valero et al. 2018). When working at the landscape scale with mosaic images, fire areas and 

polygon size are much larger compromising the performance of FOM as an evaluating 

metric. 

 Baddeley distances ranged between 14.32m for Oak Flight 2 and 167,510m for Oak 

Flight 3, with an average value of 41,906m when using the polygonize function and 36.174m 

when using the concave hull function. Even though these values are within an expected 

range, as with FOM the Baddeley distance is also affected by the overall scale of the 

polygons, so as the scale in size of the polygons increases the Baddeley distance and FOM 

metrics will naturally increase as well.  

Inner and outer difference values were all closer to zero with a maximum value of 0.322 

when the polygonize function was used for Oak Flight 3. Average values for the inner and 
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outer difference when mosaics are polygonized are 0.098 and 0.080 with a total (inner plus 

outer) average difference of 0.179. Average values for the inner and out difference when the 

concave hull is applied are 0.041 and 0.135 with a total average difference of 0.176. Values 

for differencing undergo a behavior opposite that of the Baddeley distance in that as the area 

of the true polygon increases, the inner and outer differences are divided by a larger number 

so the error will decrease as scale increases. Figure 8 provides an illustration of inner and 

outer differencing for the flight during the Slater fire (flight 0553). One prominent 

differencing error in purple (inner difference) can be seen where few fire pixels continue the 

active perimeter and the automated method cuts inside the fire area, but the majority of 

differencing errors are minor. 

Jaccard index values were all above 0.7 ranging from 0.725 to 0.928. Average Jaccard 

indexes were similar between the polygonize function 0.832, and the application of the 

concave hull 0.838. The high Jaccard index values indicate that the regions inside the 

automated polygon are also mostly inside the manually drawn polygon and the two polygons 

are very similar. 

Simulated burn area is often compared to true burn area in assessing the performance of 

fire behavior models (Monedero et al. 2019), and when initiating a model run from infrared 

polygons (Kochanski et al. 2019, 2021) it is important to understand the accuracy of the 

polygon dimensions. For this, we assess the differences in area by subtracting the area of the 

automated polygon by that of the ground truth polygon. The largest difference occurred for 

the Slater flight which underestimated the active fire area by 3,265,051m2, and the smallest 

difference was Oak Flight 3 which overestimated the area by 249,116m2. Concave hull 
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produced the highest difference in area for Oak Flight 1 over-edging the active fire area by 

533,939m2, and the lowest difference in area occurred for Oak Flight 3 under-edging the area 

by 129,149m2. Average differences in area when polygonized is approximately 1,058,549m2, 

and approximately 332,551m2 when a concave hull is used. 

 

Based on visual inspection of Figure 9, where a comparison between the automated edge 

detection method applied to image mosaics, the concave hull applied to mosaics, and the 

manual annotations are overlayed, it can be seen that there is general agreement between the 

Table 1. Five evaluation metrics used to assess the performance of the automated method. 
Baddeley distance, FOM, Inner/Outer difference, Jaccard index, and Area. 

Metric Oak Flight1 Oak 
Flight2 

Oak Flight3 Slater Flight 

Concave Hull – Baddeley(m) 43.416 26.718 17.484 57.078 

Concave Hull - FOM 0.0132 0.0424 0.2486 0.0086 

Concave Hull – Inner Difference 0.0010 0.0015 0.1215 0.0382 

Concave Hull – Outer Difference 0.2231 0.2169 0.0666 0.0346 

Concave Hull - Jaccard Index 0.7771 0.8206 0.8237 0.9284 

Polygonize – Baddeley(m) 24.336 14.322 1.6751e5 78.391 

Polygonize - FOM 0.0666 0.1195 2.1128e-8 0.0395 

Polygonize – Inner Difference 0.0020 0.0081 0.3223 0.0615 

Polygonize – Outer Difference 0.1154 0.1455 0.0377 0.0227 

Polygonize – Jaccard Index 0.8176 0.8659 0.7253 0.9177 

Area of hand drawn polygon 
(m2) 

1,869,620 2,280,438 2,352,536 84,022,008 

Area of polygonized polygon 
(m2) 

2,276,263 2,593,825 2,103,420 80,756,957 

Area of concave hull (m2) 2,403,559 2,771,607 2,223,387 84,197,956 
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automated method and manual annotations of the main fire geometry in Figure 9a,b,d and 

less agreement in Figure 9c. The automated method visually performed best for the Slater 

fire flight (Figure 9d). With the use of the polygonize or concave hull, the active fire edge 

provides a smoother active perimeter compared to the hand-drawn perimeter, but still 

captures the fire geometry (shape and size). Over areas of higher fire intensity where the 

gradient is stronger, the automated and manual edges are analogous, but in areas where small 

fingers of fire extend from the fire area, and areas where smoke is present, have shown to be 

problematic.  

 
Figure 8. Perimeter area differencing between the automated edged 
delineation and manual annotation delineation of the active fire edge. 
Areas shaded in pink are the outer difference between the automated 
and manual methods, and purple is the inner difference. 
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2.6 Discussion and conclusion 

Remote sensing techniques used to monitor and observe wildfire is a critical component 

of understanding fire dynamics. Their versatility provides means of assessing active fire 

scenarios from various platforms. However, acquiring the needed observations to improve 

fire spread calculations is challenging. The dataset used here, while lacking radiative 

 
Figure 9. The four flights used in evaluation metrics: a) the Oak fire flight 0533, b) 
Oak fire flight 0535, c) Oak fire flight 0537, and d) Slater fire flight 0553. Each image 
provides a visualization of the automated method applications. The blue dotted line 
represents the results of applying the automated method directly to mosaics, the yellow 
line is after applying the concave hull, and the brown line is the hand-drawn annotation. 
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components of fire, has an extensive number of images that provide value to develop fire 

spread forecasting models. Automated methods of image processing for extracting active fire 

edges were evaluated and compared. A new method proposed in this research, thresholding 

about the mean pixel intensity plus canny edge detection, outperformed several other 

common thresholding and edge detection algorithms. The new method provided satisfactory 

delineation of active fire edges over a range of image complexity belonging to multiple fires. 

It is worth noting that while this algorithm works well for these case studies, it is likely some 

parameters will need to be adjusted when working with other fires or datasets. As described 

in section 3.2 the size of edges that need to be removed will fluctuate depending on which 

processing method is used and which flight is being processed. Iterations of morphological 

functions such as dilation and hole filling will also likely need to be adjusted for different 

fires. Furthermore, setting an automated threshold value may fluctuate for different fires, and 

small changes in the value of b in equation (8) can produce under or over-thresholding. 

Typically, within laboratory and field experiments fire spread takes on more of an 

elliptical form providing a simpler shape to segment and contour, however the heterogeneous 

fire geometry at the landscape scale can enhance the difficulty in constructing active fire 

edge algorithms. Although, should this type of data be used to improve fine-scale fire 

behavior modeling, it may be acceptable to provide polygons of an active fire edge that do 

not precisely follow a detailed cut-out of the perimeter, but rather a smoothened version of 

the polygon like the one provided when applying the concave hull in Figure 9.   

While the method appears to perform well in this study, the successful algorithm is 

dependent on the use of multiple iterations through morphological functions implying that 
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standard thresholding or edge detection techniques alone are not adequate enough to extract 

active fire edges in complex images. Rather, it is necessary to develop intensive algorithm 

structures. Some of the result disparities may also be a function of pixel saturation. Sensors 

capturing high-intensity portions of fire will often saturate which can bias image histograms 

at the maximum value.   

The automated method performed more comparable to ground truth delineations when 

applied to georeferenced flight mosaics versus georeferenced individual images. Use of the 

polygonize function and alpha shapes allowed for the creation of single polygons of the 

edged mosaics to assess error metrics in the automated method by calculating FOM, 

Baddeley distances, the Jaccard index, a normalized area difference ratio, and differences in 

polygon areas. FOM values showed poor similarity metrics between the automated and 

manual method, and while Baddeley distance values were in an expected range, it is 

important to remember that FOM and Baddeley distance are affected by the overall size of 

the polygons, and may not be appropriate in landscape scale fire delineation analysis.     

These results set a foundation for the use of infrared fire observations captured during 

firefighting operations in fire spread analysis to be applied for research applications. This 

allows for the evaluation of higher-resolution fire spread dynamics during bouts of extreme 

fire behavior at the landscape scale, which will in turn serve to develop and advance fine-

scale fire behavior models. Our results also reiterate the need for improved methods of 

extracting high-resolution active fire perimeters from airborne infrared imagery, such as 

those at the landscape scale when fire temperature thresholding is not available. As future 

research campaigns focus on taking infrared measurements during landscape wildfires, 



45 
 

enhanced automated methods capable of handling large amounts of data are going to be 

necessary. 

Future work will include improving these image processing methods for landscape scale 

fires taken from high-quality airborne sensors where fire behavior metrics such as fire 

radiative power are available. Identifying a threshold capable of identifying background 

pixels belonging to the fire geometry and those not belonging to the fire geometry will 

continue to be a difficult task in working with complex fire images of this size.   
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Chapter 3 

Analysis of High-Resolution Airborne Thermal Infrared Fire Behavior Data Collected During 
the California Fire Dynamics Experiment (CALFIDE) 

 

3.1 Abstract 

In-situ measurements of wildfires are increasingly important to meet the objectives of the 

fire community and provide invaluable data for fire behavior analysis. During the California 

Fire Dynamics Experiment (CALFIDE) field campaign the San Jose State Wildfire Imaging 

System (SWIS) aimed at acquiring landscape-scale high-resolution wildfire data, 

successfully capturing fire behavior during the Mountain and Mosquito fires in California, 

USA 2022.  This study focuses on integrating data from two infrared bandpass cameras with 

an Inertial Navigation System (INS) to develop advanced processing methods, and facilitate 

the generation of georeferenced orthomosaics enabling the calculation of fire radiative power 

(FRP) and a detailed analysis of fire spread. While challenges were encountered with the 

georeferencing of MWIR images, LWIR imagery was successfully georeferenced to observe 

fire spread, calculate FRP, and improve the automated active fire edge detection method 

presented in Chapter 2. This analysis acknowledges the complexities of building 

sophisticated methods for processing data of this stature, but emphasizes the need for future 

improvements. The results actively contribute to the advancement of processing techniques 

for high-resolution wildfire data and open the capability of that data to be used for a more 

extensive analysis of fire behavior.   

3.2 Introduction 
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Our understanding of fire dynamics has greatly improved with increased research efforts 

and the development of modern research equipment. However, the knowledge of fire 

behavior and the ability to accurately forecast that behavior is still lacking, partially due to 

the inadequate amount of comprehensive research-quality data available. Many laboratory 

and field experiments have been conducted in an attempt to measure and quantify fire 

behavior parameters, yet fire behavior models continue to struggle to accurately simulate and 

forecast fire behavior during landscape scale wildfires consistently.  Obtaining the necessary 

wildfire data is challenging though. The uncertainty in fire ignitions and environmental 

conditions driving behavior means that resources must be reactionary in their response to fire 

activity and the equipment used to collect data needs to be of high caliber. 

During recent years, there has been increased attention to capturing in-situ fire data 

during wildfires where remote sensing and ground-based instruments are able to provide a 

diverse dataset. Airborne infrared (IR) thermography is a critical component of measuring 

high-resolution fire spread and estimating fire intensity of wildland fires, and the success of 

evaluating fire behavior is a proponent of the specific wavelengths used to measure the fire, 

the resolution at which the fire is observed, and the ability of the operating system. Research 

campaigns utilizing this method of study, such as the Fire Influence on Regional to Global 

Environment on Air Quality (FIREX-AQ) campaign where aircraft observations were able to 

help provide a comprehensive analysis of pyroCb activity during the Williams Flats fire in 

2019 (Peterson et al. 2022), are gaining importance. Several IR camera sensors have been 

used in collecting and analyzing wildland fire data such as the Autonomous Modular Sensor 

(AMS, Peterson et al. 2013, Schroeder et al. 2014), Wildfire Airborne Sensor Program 
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(WASP, Dickinson et al. 2016), FireMapper 2.0 (Stow et al. 2019), and the MODIS/ASTER 

Airborne Simulator (MASTER, Peterson et al. 2022). These analyses have provided valuable 

information about the fire behavior, but are either performed on experimental burns, provide 

low temporal resolution of the fire, have a limited number of repeat passes over the fire, or 

are of a lower spatial resolution. 

CALFIDE was a collaborative field campaign between NOAA Chemical Sciences 

Laboratory (CSL), San Jose State University (SJSU), University of Nevada Reno, and NASA 

Goddard to study wildfire behavior from a NOAA fixed-wing aircraft in coordination with 

mobile ground sensors. Instruments aboard the aircraft included equipment to measure 

atmospheric chemistry, a scanning Doppler lidar to survey horizontal wind field and vertical 

plume dynamics, and the SWIS instrument to provide high-resolution infrared thermography 

of the fire behavior. Ground-based mobile Doppler radars and lidars were also used to 

measure wind fields and plume dynamics.   

CALFIDE provided an initial attempt to measure and analyze wildfire behavior with the 

SWIS instrument capable of capturing fine-scale fire behavior with high resolution. During 

the campaign, SWIS flew over several fires in Oregon and California including Rum Creek, 

Mountain, and Mosquito. Upon the successful capture of the data, this research analysis 

focuses on the Mosquito and Mountain fires detailing the methodology performed in 

processing sensor frames. MWIR and LWIR camera data was processed and matched with 

data from the INS, the infrared frames were georeferenced, brightness temperatures (BT) 

were used to calculate FRP, and active fire edges were extracted with an attempt to improve 

upon the methods in Chapter 2. Explored in this analysis are the robust methods used to 
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integrate data captured by two infrared bands from different cameras, functionality of the 

camera data, and the ability to use extensive wildfire data for an analysis of fire spread and 

intensity.   

3.3 Methods 

3.3.1 Fire observations 

SWIS is a state-of-the-art infrared sensor package comprising two radiometric cameras 

with different thermal band passes and an INS that records camera orientation dimensions 

and navigation. The MWIR camera is a Telops FAST M150 with a spectral range of 3-5µm 

and a spatial resolution of 640x512 pixels, that comes with four temperature range filters. 

The LWIR camera is a Workswell WIRIS Pro with a spectral range of 7.5-13.5µm also 

capturing at a spatial resolution of 640x512 pixels and is equipped with a visible camera. 

Frames from the cameras are stored as 16-bit types. Using both IR bands allows for 

simultaneous capture of peak fire emittance and intensity and the landscape. Brightness 

temperatures from both sensors can then be used to calculate FRP, and the LWIR images can 

be used to delineate active fire edges. The setup of the SWIS instrument is displayed in 

Figure 10. 

 
Figure 10. The NOAA Twin Otter (left), and a display of the SWIS 
instrument aboard the Twin Otter (right). The instrument points out the 
bottom of the aircraft providing a nadir view of the fire. 
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SWIS flew aboard the NOAA Twin Otter providing a nadir viewing angle outside the 

bottom of the aircraft. The camera system provided a detailed capture of the active fire edge 

during the Mountain fire in Siskiyou county, California on September 3, 4, and 6, 2022, and 

the Mosquito fire in El Dorado and Placer counties, California on September 8, 2022. The 

Mountain fire was initiated on September 2, 2022 and burned over 13,400 acres in rugged 

terrain. Critical fire weather conditions began on September 2 persisting into September 6 

where the fire exhibited extreme fire behavior and growth on the western flank between 

September 3-6. Several flights with the SWIS instrument were made on September 3 over the 

western flank of the fire between 2022-09-03 22:59 and 23:54UTC (1559 to 1654 local time) 

covering eleven overpasses in 55 minutes with an average return interval of approximately 5 

minutes. The Mosquito fire began September 6, 2022 burning over 76,000 acres. During 

critical fire weather conditions, the fire exhibited extreme fire behavior on September 7-8 

expanding towards the northeast, east, and southeast. Flights covering the northeastern, 

western, and southeastern flank of the fire were made on September 8 during the period of 

extreme behavior between 2022-09-08 20:27 and 2022-09-09 02:18UTC (09-08 1327 to 

1918). Eight repeat passes over the fire during that period were previously processed and 

used in this analysis. 

3.3.2 Data processing 

A processing workflow of the IR images included extracting the frames from the thermal 

bands, collocating image times with camera orientation and GPS, georeference frames, 

calculating FRP, and automated delineation of active fire edges. 

3.3.2.1 Mountain fire - sensor integration, georeferencing, and FRP  
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Frames recorded in the thermal band during the Mountain fire were extracted separately 

from the Telops and Workswell cameras, taking two frames per second. Examples of the 

images in Figure 11 provide a visual of the advantage in using two different band spectrums. 

MWIR images (Figure 11c) provide more detail about the fire while LWIR images (Figure 

11a,b) provide more detail about the background landscape. Two frames per second helped 

to reduce processing time but still provided enough spatial information to correctly 

georeference the images.  

Sensor capture times between the Telops, Workswell, and INS were recorded 

individually, so the offset between the capture times was retrieved and the camera data was 

adjusted to match the time of the INS. Raw INS data was processed in the software Qinertia 

to generate flight paths with internal and external camera orientation. Capture times and 

camera frames for each camera were then spatially paired with interior camera orientation 

parameters and navigation coordinates for each timestamp. Output files were generated with 

roll, pitch, yaw, latitude, longitude, altitude, and standard deviations for the frames. Figure 12 

is a geographic overlay of the flight paths taken by the aircraft over the Mountain fire (left) 

and the Mosquito fire (right) during the time of observations. Flight paths are in white and 

 
Figure 11. Example of LWIR images (a,b) captured from the Workswell camera and a 
MWIR image (c) captured from the Telops camera taken during the Mountain fire. 
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the evolution of the fire perimeters are in darker (perimeter the day of) and brighter red 

(perimeter leading into the following day) colors. Flight paths are outputs of the generated 

flight paths from Qinertia, and the fire perimeters were downloaded from the National 

Interagency Fire Center (NIFC 2018) open data site (https://data-nifc.opendata.arcgis.com/). 

Fire frames from the Telops and Workswell were imported into the Agisoft Metashape 

software where they were linked with the camera orientation and navigation reference data. 

Image pixel values were rescaled to 8-bit type for processing in the georeferencing software, 

where the maximum BT was assigned a value of 255 and the minimum BT was assigned 0. 

Frames were organized by passover, so images containing fire were grouped together for 

each time the aircraft passed over the active fire edge. Images in each group were aligned 

sequentially to match point features belonging to multiple images. A digital elevation model 

(DEM) acquired from the United States Geological Survey (USGS 2023) GIS data download 

 
Figure 12. Shows the flight paths (white) taken during the analysis period over the fire 
perimeters of the Mountain fire (left) and Mosquito fire (right). The darker red perimeters 
are the fire perimeters on the day of observation and the brighter red perimeters indicate 
the growth of the fires into the following day.  

https://data-nifc.opendata.arcgis.com/
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portal (https://www.usgs.gov/the-national-map-data-delivery/gis-data-download) was input 

into the software and overlayed with each of the image groups. Every passover group was 

then georeferenced to build eleven orthomosaic Geotiffs and exported as two-band array 8-

bit types. A visual representation of the georeferencing workflow shows the images aligned 

on a basemap with projections of point features used to create the alignment in Figure 13. 

Band one of the LWIR and MWIR mosaic rasters were read into python as an array using 

the gdal function and inversely rescaled to the maximum and minimum brightness 

temperatures of the original images. New JPG images of the mosaics were saved with the 

georeferenced brightness temperature data. Brightness temperatures were used to calculate 

the per-pixel value of FRP based on the Stefan-Boltzmann Law: 

𝐹𝑅𝑃𝑝𝑖𝑥𝑒𝑙 = 𝜀𝜎(𝐵𝑇𝑝𝑖𝑥𝑒𝑙
4 − 𝐵𝑇 𝑏

4)    (10) 

 
Figure 13. Frames from a single pass over the active fire edge are aligned with tie points 
(white, gray, and black dots) projected onto a basemap in the Metashape software. 

 

https://www.usgs.gov/the-national-map-data-delivery/gis-data-download
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FRPpixel is the FRP value per pixel (W/m2), ε is the emissivity, σ is the Stefan-Boltzmann 

constant 5.6703x10-8 (W/m2·K4), BTpixel is the brightness temperature of a pixel, and BTb is 

the brightness temperature of the background 296.15K. The Workswell camera uses an 

emissivity value of 0.95 in its conversion to brightness temperature, so an emissivity value of 

0.95 is used in the FRP equation. A pixel was determined to be a fire pixel when BT 

exceeded 303K, therefore the background value (BTb) was determined by examining a 

sample of frames with various amounts of background and fire pixels and taking the mean of 

the pixel values between the minimum recorded BT and 303K.  

3.3.2.2 Mosquito fire - automated edge detection 

Building from the automated active fire edge extraction method developed in Chapter 2, 

this is an attempt to improve and simplify the processes involved in the workflow for this 

dataset. While the application of a threshold mask can define a transition between identifying 

the fire area versus the non-fire area and creating a distinct binary edge to be contoured, it 

does not take full advantage of the sophisticated algorithm of the canny edge detector. The 

previous method, thresholding around the mean pixel intensity plus canny edge detection, is 

also dependent on several iterations of multiple morphological functions, and improving the 

method includes reducing the number of functions used or the number of iterations needed. 

LWIR orthomosaics created in the Metashape software for the Mosquito fire were used to 

enhance the automated method in this analysis.   

Orthomosaics were previously processed and available to analyze. Each 8-bit LWIR 

mosaic raster is read using the gdal function as an array using the first of the two bands. A 

Gaussian filter is applied to the image using a 7x7 matrix and a standard deviation that is 
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determined by the matrix kernel as in Eq. (6). The higher resolution images captured with the 

SWIS instrument detect a higher variation of fire intensity pixels than the LWIR images used 

in Chapter 2, so smoothing the image with a larger 7x7 kernel helped to diminish the 

increased number of gradients for the edge detector to follow. The canny edge detector was 

then performed on the Gaussian smoothed image with a lower threshold value of 150, an 

upper threshold value of 240, and the size of the Sobel kernel set to 3. Threshold values were 

manually tuned until the best possible results were achieved. A lower threshold value of 150 

was selected because the edge detector was detecting the edge of the mosaic. Values lower 

than 150 all edged not only the fire edge but also the mosaic edge. An upper threshold value 

of 240 did not provide a single continuous edge around the active fire area but provided a 

significant enough number of smaller edges around the fire area without overedging the 

frame.  

Following the canny edge detector was a single iteration of dilation to make the edges 

more pronounced and easier to work with. Edges smaller than 20 pixels in size were removed 

to eliminate any excess edges. Given that the extracted fire edge was comprised of smaller 

edges following the fire geometry, a function was needed to connect the non-continuous 

edges. To do so, contours were identified in the image with their left, right, top, and bottom-

most coordinates. Each contour compared the distance of neighboring contours to find the 

minimum distance between it and another contour. Once a minimum distance was 

determined, a line was drawn to connect those two contours. The final result is a line 

outlining the active fire edge overlayed on the original mosaic. A block diagram of the new 

automated method is illustrated in Figure 14. 
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3.4 Results 

3.4.1 Mountain fire, georeferencing and FRP 

Georeferenced LWIR orthomosaics were successfully generated in the Metashape 

software for ten of the eleven repeat passes over the Mountain fire, however the MWIR 

images experienced difficulty in the processing workflow. This discrepancy was expected 

with MWIR images given their lack of background detail. Similar point features between 

images with no background information were difficult to identify, so not all of the images 

were able to successfully align or the image points were not successfully projected onto the 

basemap surface. A lack of image alignment with correct projections generated a distorted 

mosaic, as seen in Figure 15. Therefore, MWIR frames were disregarded for the analysis. 

FRP can still be calculated from the MWIR data, but without geographic information 

regarding the pixels, FRP values cannot be properly referenced or integrated with the LWIR 

data. Important to note is that even though the MWIR frames were unable to be 

georeferenced in this methodology, it does not imply they are incapable of being 

georeferenced, rather it accentuates the need for a georeferencing software able to process 

this type of data.  

 
Figure 14. Block diagram of the automated method developed for the high-resolution 
LWIR image mosaics during the Mosquito fire. The input image is a long-wave thermal 
orthomosaic where a Gaussian filter was first applied, followed by the canny edge 
detector to detect the active fire edges, and then connecting the edge contours. 
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Several examples of the successful ten LWIR orthomosaics are shown in Figure 16. The 

images were properly aligned and an evident representation of the fire geometry and intensity 

can be seen. During pass six over the fire, there was an inconsistency in the Workswell 

capture causing a loss of continuity in the fire images. Disparity in image alignment created 

distortion similar to that seen in Figure 15, so that pass was also disregarded in this analysis. 

A geospatial composite of the mosaics made in QGIS illustrates a visual of the fire 

progression (Figure 17). There is a noticeable expansion of the fire along the western front 

with fire growth in the upper region of the fire, and considerable growth westward in the 

middle and lower regions following Noyes Valley Road and towards Meadow Gulch. The 

fire experienced the most significant growth in the middle region on 09-03 between pass 5 

 
Figure 15. Orthomosaic of MWIR images captured 
during the Mountain fire. A mosaic raster is produced 
distorting the fire pixels in the image giving the active 
fire edge and area a smeared appearance.  

 



58 
 

23:17:01UTC (1617 local time) and pass 7 23:27:28UTC (1627 local time), and in the lower 

region between pass 8 23:35:21UTC (1635 local time) and pass 11 23:52:34UTC (1652 local 

time). Areas that experienced more significant fire behavior coincide with the most intense 

areas of the fire. Marking Gazelle Calahan Road (the road just east of the lower region of the 

fire) as a reference point, it can also be observed that the mosaic georeferencing was 

inconsistent in precision as the distance between the road and fire fluctuates throughout the 

evolution of the mosaics.   

 
Figure 16. LWIR orthomosaics of four passes over the fire: a) pass 1, 
b) pass 2, c) pass 4, and d) pass 7. Images are properly aligned 
without distortion to the shape or size of the fire. 
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Figure 17. Orthomosaics of the ten passes over the fire show the evolution 
of the fire spread on 09-03-202 from 22:59:23 – 23:54:34UTC (1559 to 
1654 local time). Darker colors indicate lower pixel intensities and brighter 
white pixels indicate higher pixel intensities. The middle and bottom regions 
of the fire expanded west/southwestward exhibiting significant fire growth 
during the 55 minutes of observation. The underlying basemap is the ESRI 
topographical map. 
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FRP calculated per pixel from the LWIR orthomosaics correlates well with the geospatial 

mosaic fire intensity composites in Figure 17. Three images in Figure 18 display the active 

portions of the fire by plotting FRP values. The maximum range in the FRP plots was set to 

4.0 kW/m2 to provide a better visual of the intensity areas. Table 2 gives the maximum FRP 

values for each pass mosaic. Maximum FRP values reached up to 13.29 kW/m2 on pass 5, 

and the most intense regions of the fire are along the western edge where the majority of fire 

growth occurred. Pass 10 (Figure 18 right) shows the highest intensity of the fire in the lower 

region as it expands southwesterly during the observed significant period of fire growth. 

Given that the MWIR captures the peak emittance of fire, and those frames were omitted in 

the analysis because they were not able to be processed for georeferencing, higher intensity 

aspects of the fire are not able to be presented. However, FRP calculated from LWIR images 

still provides valuable information in assessing fire behavior and can permit how changes in 

fire intensity alter with fire spread. 

 

 

 

Table 2. Calculated maximum FRP values for each pass over the 
Mountain fire. 

Pass Number Max FRP (kW/m2) 
1 8.18 
2 11.95 
3 7.86 
4 5.51 
5 13.29 
7 5.19 
8 8.18 
9 11.39 

10 12.24 
11 5.51 
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3.4.2 Mosquito fire, delineating active fire edges 

The newly constructed automated active fire edge detection method was applied to the 

Workswell thermal mosaic images recorded during 8 passes over the Mosquito fire. Adapting 

previous attempts resulted in the reduction of applying morphological operators, in which the 

only morphological function used was a single iteration of dilation. Higher-resolution 

radiometric images allowed for the thresholds in the canny edge detector to be refined, better 

distinguishing intensity gradients between the background and active fire perimeter. This 

 
Figure 18. Example LWIR FRP values plotted during pass 1, pass 8, and pass 10 over 
the Mountain fire 09-03-2022. Higher FRP corresponds to higher intensity areas of the 
fire along the active fire edge. The FRP value ranges were plotted for visual 
representation so higher intensity aspects of the fire are clearly displayed.  
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reduced the extent of the algorithm by several operations. While there was a reduction in the 

number of operations to the new methodology, the technical aspect of finding and connecting 

contours can be extensive whereas morphological operators are simple to implement. Even 

though finding the minimum distance between contour points and connecting contours is 

standard in connecting non-continuous edges or a set of points, the process may require a 

deeper analysis of the edges.  

Outcomes of the new method can be seen in Figure 19. The new method results in a well-

defined edge around the active fire perimeter, handling larger disparities in non-continuous 

edges such as that in Figure 19f,g. This is valuable because although there is a gap in fire 

pixels, they may still want to be considered part of the same active fire perimeter. 

Application of this method may improve previous attempts at creating a single-edge polygon, 

such as concerning the mosaic of the Creek fire in Chapter 2 that was not used in evaluation 

metrics because of a large non-continuous edge in the fire perimeter. Further improvements 

include the reduction of falsely identified background pixels as fire pixels, as no false 

positives exist outside the fire geometry. Fire area geometries of this dataset are not as 

complex as the geometries seen in the mosaic images in Chapter 2, nevertheless, they 

continue to illustrate the variability of geometry in wildfire spread compared to that of 

experimental or laboratory fires.  

Several inconsistencies arise from the new method. In Figure 19a,b several smaller edges 

were identified inside the fire area and connected to edges along the active fire perimeter. 

Figure 19c,d,f,g do not contain rogue edges, but rather do not properly identify the nearest 

contour when connecting points. This may be a proponent of the function miscalculating the 
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minimum distance between two points where it is unable to locate the nearest contour in a 

specific orientation. Misdirected connected lines appear to be a result of a contour unable to 

identify a point behind itself. In some instances (Figure 19g,h) the algorithm also cuts inside 

the fire edge when few fire pixels are present or the gradient between fire and background 

pixels is weak. Handling the feature would involve changing the threshold values in the 

 

 
Figure 19. The automated active fire edge method applied to georeferenced flight 
mosaics. Each mosaic represents one pass over the same fire edge. The algorithm 
successfully delineated the active fire edge in the eight passes.  
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canny edge detector which would better identify weak edges, but also lead to an increased 

number of unwanted edges.      

3.5 Conclusion and discussion 

The CALFIDE field campaign provided an initial attempt to procure landscape scale 

high-resolution wildfire data with the SWIS instrument and develop the advanced technical 

necessary methods to process the data. Successful capture of thermal infrared data during 

several wildfires including the Mountain and Mosquito fires, allowed for a detailed analysis 

of the methodology workflow to integrate two different infrared bandpass cameras with an 

INS, build georeferenced orthomosaics with the LWIR images of repeat passes over the same 

active fire edge, observe fire spread, calculate FRP, and construct an improved automated 

method of delineating active fire edges.   

Capture times between the two cameras and INS are offset, so before any other 

processing could be done, the offset was found and matched to the capture time of the INS. 

Each camera frame was integrated with camera orientation and navigation data. LWIR 

images of the eleven repeat passes during the Mountain fire were used to successfully 

generate orthomosaics for ten of the passes and used to show geospatial spread of the fire and 

calculate FRP. While MWIR images provide higher amounts of detail about the fire, they 

were unable to be georeferenced because of their lack in detail of the landscape. Not enough 

tie points between images caused poor alignment creating a distorted mosaic. LWIR data 

collected during repeat passes over the Mosquito fire were used to improve the automated 

active fire edge detection method discussed in Chapter 2, where the number of operations in 
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the algorithm was decreased and the active fire edge was satisfactorily contoured with a 

reduction in the number of falsely identified edges.  

High temporal resolution of repeat passes over the same active fire edge was 

accomplished during this campaign and is an objective that needs to be reiterated. Intentions 

of processing the times selected in this dataset were to develop advanced methods to 

integrate two different bandpass cameras used in parallel to calculate FRP via multiple 

wavelengths in the Plank function (Eq. 2) and observe fire spread. Obtaining detailed 

information about both the fire and the background within a single frame carries an 

advantage in the geospatial accuracy of the fire structure and dynamics.    

Measuring wildfire characteristics is challenging. High-resolution infrared thermography 

is a vital component of being able to increase comprehensive datasets available for 

processing and improve the understanding of fire behavior. Success of the mission is 

dependent on the operability and performance of the research equipment used, and the ability 

to fully process the data. The methodology set forth in this analysis contributes to providing a 

segway into developing advanced methods of processing high-resolution data captured 

during landscape scale wildfires. Further analysis of fire behavior using this dataset also has 

the potential to challenge how fire intensity is quantified and how fire behavior can be better 

represented in numerical models.   

3.6 Future work 

As this analysis is an initial attempt at developing methods to execute dual band camera 

integration and processing of an advanced camera system to measure wildfire, and several 

issues existed in the processing workflow, not everything that was strived for was achieved. 
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Such is the case in many research campaigns. There is however, the ability to complete the 

methodology. The primary challenge in this analysis was georeferencing the MWIR images 

from the Telops with the commercial software used, implying that the pivotal advancement 

of this project is to develop the software capable of handling this type of data. 

Once georeferencing of the MWIR images has been achieved, FRP can be derived by a 

mutli-band relationship computing temperature from radiance and wavelengths (Riggan et al. 

2004). Essentially this would involve inverting the physics of how the cameras measure 

brightness temperature based on the wavelength to calculate temperature from the Planck 

function: 

𝑇 =
ℎ𝑐

𝑘𝐵𝜆1𝑙𝑛⌈
𝐵2
𝐵1

(
𝜆2

5

𝜆1
5)[𝑒𝑥𝑝(

ℎ𝑐

𝑘𝐵𝜆2𝑇
)−1]+1⌉

   (11) 

where h is Planck’s constant 6.626x10-34 (m2 kg / s), c is the speed of light (3.00x108m/s), kB 

is the Boltzmann constant 1.3808x10-23 (m2 kg / s2 K), λ1 and λ2 are the wavelength of the 

two cameras in meters, B2 and B1 are the radiances (J/m2·s·sr·µm), and T is the temperature 

(K). FRP would then be calculated using the Stefan-Boltzmann Law. 

Delineating active fire edges from MWIR frames has not yet been attempted in this work, 

but with the addition of georeferenced MWIR mosaics, there may be an opportunity for a 

more detailed extraction of the active fire perimeters given that fewer gradients exist between 

the fire and background. Both the active fire edge methods discussed in Chapter 2 and in this 

Chapter would be tested. This methodology also has potential to be used in future datasets 

including the California Canyon Fire Experiment and FireSense campaign.  
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Conclusion 

Wildland fire is a complex physical process that is difficult to quantify. Infrared 

thermography has become a common method in measuring radiant energy to observe fire 

spread and calculate fire radiative power to better understand how fires behave. Collection of 

this type of data is capable of improving fire spread forecasts produced by fire behavior 

models. Sensors aboard satellites such as MODIS, GOES, and VIIRS provide consistent 

active fire detection and the means to calculate FRP at large scales, and ground sensors 

deployed during experimental fires are valuable in measuring the intricacies of fire behavior 

while providing ground truth. Airborne infrared sensors allow for the capture of fire behavior 

at higher resolutions than can be achieved by satellites and are more versatile than ground 

sensors in the conditions they can be deployed under. Operational airborne infrared data used 

in firefighting management can be a great addition to other research datasets used to advance 

fire spread analysis. In-situ airborne infrared data acquired during wildfires, such as that 

obtained from the CALFIDE campaign, can provide invaluable high-resolution insights into 

fire behavior properties with detailed analysis of fire spread and FRP. The new automated 

method detailed in Chapter 2 and its refined structure presented in Chapter 3 for extracting 

active fire edges in infrared images, enhances the capacity to contour the detailed structure of 

the active fire edge within complex wildfire geometries independent of radiometric 

properties, is applicable to cameras used during firefighting operations and research, and can 

be utilized to process large datasets. This provides an opportunity to calculate fire spread at 

higher resolutions with various camera systems. Analysis of the imagery collected from the 

SWIS instrument in Chapter 3 establishes the groundwork at developing a state-of-the-art 
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processing methodology for high resolution airborne infrared wildfire data. It demonstrates 

the capabilities of the new platform in analyzing fire behavior and lays a foundation for 

automating the entire methodology of georeferencing, extracting active fire edges, and 

calculating FRP, yet also highlights difficulties in integrating a multi-camera system. As the 

fire research community strives to advance the collection of wildfire data and the abilities of 

fire behavior models, improved methodologies to analyze the data will continue to be an 

important aspect. 
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