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ABSTRACT

ON THE COLORABILITY OF THE SPHERE COMPLEX

by Bennett Haffner

One of the most prominently studied groups in geometric group theory is the

outer automorphism group of the free group Out(F ). The sphere complex provides

a topological model for Out(F ). We demonstrate the chromatic number of the

sphere complex is finite.
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1. Introduction

Geometric group theory studies geometries on the Caley graphs of infinite

groups. One of the most prominent of these groups is the outer automorphisms of

the free group Out(F ). The sphere complex S(Mr) (Definition 1.3) (where Mr is

the connect sum of S3 with r copies of S1 × S2) provides a topological model for

Out(Fn) because Out(Fn) is isomorphic to the automorphisms of S(Mr) [AS11].

An important property of any complex is its chromatic number.

Definition 1.1. For a graph G and set of colors S, we say the function ϕ : G → S

is a coloring on G if whenever a pair of vertices a, b ∈ G share an edge, ϕ(a) ̸= ϕ(b).

The chromatic number of G, denoted χ(G), is the smallest |S| over all sets S for

which a coloring exists on G.

We show that the chromatic number of the sphere complex S(Mr) is finite.

Theorem A. For every r ∈ N, χ(S(Mr)) ≤ 2(9r−4)2g .

For r = 1, the sphere complex is a single vertex and thus trivially colorable,

whereas for r = 2, the complex is the Farey graph, which is planar and thus

4-colorable. It is when r = 3 that the graph becomes not only locally infinite, but

of infinite diameter as well. This is where we will focus our efforts.

We approach Theorem A by analogy with Bestvina, Bromberg, and Fujiwara’s

[BBF15] construction of a finite coloring on the curve graph C of a surface.

Definition 1.2. For a surface M , the curve complex C(M) is the graph with

vertices given by isotopy classes of simple, closed curves in M . For any two curves

a, b ∈ C(M), there is an edge between them only when there exists some disjoint

representatives of [a] and [b].

The sphere graph is similarly defined on 3-manifolds.

Definition 1.3. For a 3-manifold M , the sphere complex S(M) is the graph with

vertices given by isotopy classes of essential embedded spheres in M . For any two
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spheres a, b ∈ S(M), there is an edge between them only when there exists some

disjoint representatives of [a] and [b].

To begin, we will introduce a set of colors defined by homology classes in double

covers, then show this set is finite for any Σg. We then present a careful exposition

of Bestvina, Bromberg, and Fujiwara’s coloring of the curve complex, followed by a

modified version of their argument designed to naturally translate to the sphere

complex. Finally, we introduce the analogous set of colors and use it to prove

Theorem A.
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2. The Finite Colorability of C

We begin with a detailed exposition of Bestvina, Bromberg, and Fujiwara’s

original proof. To do so, we first introduce a construction and a lemma useful in all

dimensions.

Definition 2.1. Let A,B be manifolds with dimension n and P be a closed,

smooth, orientable submanifold of dimension n− 1 embedded in both A and B.

The boundary of the cut manifold ∂(A \\ P ) has two components a1 and a2 and

similarly for B, ∂(B \\ P ) = b1 ⊔ b2 with a1, a2, b1, b2 all homeomorphic to P . We

call the manifold constructed by identifying a1 with b2 and b1 with a2 the crosswise

cut-and-paste construction (see Figure 1).

Figure 1. A connected cover created by Definition 2.1 using a non-
separating curve

Lemma 2.2. Let M be an n-dimensional closed, orientable, smooth manifold and

P an orientable, closed n− 1 dimensional smooth submanifold in M . If P is
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non-separating, then the crosswise cut-and-paste construction applied to two copies

of M along P is a connected double cover M̃ → M .

Proof. Let M̃ be the cover constructed as above. For any x ∈ M not in any

component of P , there exists some neighborhood N of x disjoint from P . The two

copies of x in M̃ , x1 and x2, will have their own neighborhoods N1 and N2 which

are both homeomorphic to N and are disjoint by construction.

Let σ be a component of P and let x ∈ σ. Since M is a n-manifold, there is

some neighborhood N of x homeomorphic to a ball in Rn. Because the embedding

of σ into M is smooth, we can decompose N into two neighborhoods A,B with

A ∩B = σ ∩N . Their lifts A1, B1 and A2, B2 will be glued crosswise to create

neighborhoods N1 = A1 ∪B2 and N2 = A2 ∪B2, which are both n-balls

homeomorphic to N . □

There are other double covers that will not serve our purposes, namely

disconnected covers. Notice that if P is a separating set, it will produce a

disconnected cover (see Figure 2).

2.1. Coloring with double covers. We will use the following notation to define

a set of colors F (Σg) on the curve complex.

Notation 2.3. We denote the closed, orientable surface of genus g with d discs

removed as Σg,d. If d = 0, we will simply use Σg. We introduce T (Σg) as the set of

all connected double covers of Σg. For any curve s embedded in Σg that lifts to

some Σ̃g, let the components of its inverse image under the covering map

ρ : Σ̃g → Σg be s̃ and s̃′. Let X(Σg) be the set of {0} and all subsets A of

H1(Σ̃g,Z2) with |A| ≤ 2 across all Σ̃g ∈ T (Σg). Finally, we define our set of colors

F (Σg) to be the set of all functions f : T (Σg) → X(Σg).

First, we will show that the sets T (Σg) and F (Σg) are both finite.

Lemma 2.4. For every g ∈ N, |T (Σg)| = 4g.
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Figure 2. A disconnected cover produced by the construction in Lemma 2.2

Proof. Connected double covers correspond to the index-2 subgroups of the first

fundamental group π1(Σ) [Hat02, Theorem 1.38]. There is a bijection between the

set of index-2 subgroups of π1(Σ) and the set of homomorphisms ϕ : π1(Σ) → Z2

because index-2 subgroups are normal. Each such homomorphism ϕ is determined

by its values on a generating set of π1(Σg). Since π1(Σg) is generated by 2g curves,

there are 22g such homomorphisms and therefore 4g connected double covers. □

Lemma 2.5. For every g ∈ N, |F (Σg)| is finite and bounded above by 2(10g−4)4g .

Proof. Since the domain of every function is T (Σg), which is finite, all that remains

is to show that the codomain X(Σg) is also finite, since |F (Σg)| = |X(Σg)||T (Σg)|.

Each nonzero element of X(Σg) is determined by a choice of a double cover Σ̃g

and some 1 or 2 element subset of H1(Σ̃g,Z2). The genus of any Σ̃g will be 2g − 1,

and thus its homology group will be generated by 4g − 2 curves. Therefore,
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|H1(Σ̃g,Z2)| = 24g−2 and for every choice of Σ̃g we have(
24g−2

2

)
= 28g−5 − 24g−3

choices of 2-element subsets and 24g−2 choices of 1-element subsets. Using the

number of possible choices of Σ̃g from Lemma 2.4 and including 0, we arrive at

|X(Σg)| = 1 + 4g
(
(28g−5 − 24g−3) + 24g−2

)
≤ 210g−4.

Combined with our result from above, we conclude:

|F (Σ̃g)| = |X(Σ̃g)||T (Σg)| ≤ 2(10g−4)4g . □

2.2. Bestvina, Bromberg, and Fujiwara’s proof. We now define the specific

functions in F (Σg) that we will use as colors on the sphere complex. For every

simple, closed, essential curve a in Σg, define fa : T (Σg) → X(Σg) by

fa(Σ̃g) =

{
{[ã], [ã′]} a lifts to Σ̃g

0 a does not lift to Σ̃g

where [ã] and [ã′] are the homology classes of the lifts of a in Σ̃g.

In the proof below, we make use of the equivalence of cobordism and homology

classes on surfaces. This equivalence does not hold for 3-manifolds, so the

technique will be reconsidered in the next proof.

Theorem 2.6. For g ≥ 2, the map ϕ : Cg → F (Σg) determined by ϕ(a) = fa

produces a coloring on C(Σg) such that if a and b share an edge in Cg, ϕ(a) ̸= ϕ(b),

that is, χ(C(Σg)) ≤ |F (Σg)|.

Proof. We will now show that for all adjacent curves a and b in C(Σg), there exists

some Σ̃g ∈ T (Σg) such that fa(Σ̃g) ̸= fb(Σ̃g), and thus fa ̸= fb.

For any choice of a, we can always construct a double cover where a lifts by

choosing a single non-separating curve c disjoint from a and applying Lemma 2.2.

We continue by cases:

(1) There is a cover Σ̃g where a lifts and b does not
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(2) For every cover where a lifts, b also lifts and a and b are not homologous.

(3) For every cover where a lifts, b also lifts and a and b are homologous.

The first two cases are straighforward. In Item 1, for the Σ̃g where a lifts and b

does not, fa(Σ̃g) ̸= 0 = fb(Σ̃g). In Item 2, their homology classes on any Σ̃g where a

lifts are distinct and fa(Σ̃g) ̸= fb(Σ̃g).

For Item 3, we will construct a double cover Σ̃g where fa(Σ̃g) ̸= fb(Σ̃g). Note

because a and b share an edge in C(Σg), they are disjoint. Therefore the

complement Σg \ (a ∪ b) has at most three connected components S1, S2, S3.

We claim that each Si contains some non-separating curve σi. The only

orientable surfaces without non-separating curves are the disc Σ0,1, the annulus

Σ0,2, and the 3-holed sphere Σ0,3. In the first case, either a or b would be

non-essential. In the second case, a and b would be isotopic and belong to the same

vertex in C(Σg). Finally, recall that curves are homologous if and only if they

cobound a subsurface. In the third case, one of the two curves is separating and the

other is non-separating, so they are not homologous.

Use the union of all σi to create a connected double cover Σ̃g by Lemma 2.2.

Suppose, seeking contradiction, that fa(Σ̃g) = fb(Σ̃g). Then there are lifts of a and

b, ã and b̃, that are homologous and therefore cobound a subsurface S̃ of Σ̃g such

that S̃ does not contain any other lifts of a or b. Under the covering map

ρ : Σ̃g → Σg, the image ρ(S̃) = S is a connected subsurface of Σg bounded by a and

b. Thus S is a component of Σg \ (a ∪ b), that is, S = Si for some i. However, then

the image of S̃ under the covering map includes σi, which means that the other lifts

of a and b are part of the boundary of Si (see Figure 3). This is a contradiction and

thus fa(Σ̃g) ̸= fb(Σ̃g). □

2.3. An alternative proof by counting intersections. We construct an

alternative proof of Theorem 2.6 by modifying two key arguments with an eye

towards translating the proof to the sphere complex.
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Figure 3. The existence of σ in S guarantees that ρ−1(S) is connected,
shown by curve γ

First, we formalize the portion of the argument that relies on the classification

of the spaces by examining the Euler characteristic χ(Si) and leveraging χ’s

additivity over disjoint unions. When we shift to 3-manifolds, χ will be replaced by

the 1st Betti number β1.

Second, unlike in surfaces, the equivalence of homology classes and cobordism

classes does not hold for spheres in 3-manifolds. To distinguish between homology

classes in a general setting, we use a theorem about counting intersections, for

which we define the intersection number.

Definition 2.7. For any subspaces A,B in some manifold with homotopy classes

A,B, we define the intersection number ι(A, b) as the following:

ι(A,B) = min{|π0(A
′ ∩B′)| : A′ ∈ A, B′ ∈ B}.

Now we can make use of the following consequence of Poincaré duality [Hat02]:

Theorem 2.8. Let M be an n-manifold with some closed curve γ. If a is an

embedded manifold of dimension n− 1, the function ι(γ, a) mod 2 determines a

homomorphism from Hn−1(M,Z2) → Z2.

8



Proof of Theorem 2.6. We proceed as in the previous proof up to the cases. Item 1

and Item 2 follow in exactly the same way as before, so it suffices to address Item 3.

Thus we suppose that b lifts to every cover of Σg that a lifts to and [a] = [b].

Notice that there are at most three components of Σg \ (a ∪ b) and call them

S1, S2, S3. Additionally, each Si must be of the form Σh,d for some 1 ≤ d ≤ 4 and

0 ≤ h ≤ g.

Every orientable surface with χ ≤ −2 has some non-separating curve. We will

now show that even if χ(Si) > −2, each Si still contains some non-separating curve

or contradicts our hypotheses. Consider each value of d in turn, supposing that

χ(Si) > −2.

d=1 In this case, Si is a subspace bounded by exactly one of a or b. Then

Si = Σh,1 so that χ(Σh)− 1 > −2 and therefore h ≥ 0. If h = 0, then Σh,1 is

a disc and either a or b bounds the disc Si and is non-essential, which

negates our hypotheses (see Figure 4). If h = 1, then Si = Σ1,1 has a

non-separating curve (see Figure 5).

Figure 4. Example of non-essential a when d = 1

Figure 5. Example of nonseparating curve σ in Si when d = 1

d=2 In this case, since Σg is connected, ∂Si = a ∪ b. Then we have for some

h ≤ g that χ(Si) = χ(Σh,d) = χ(Σh)− 2 > −2 and thus −2h > −2, which

means that 1 > h = 0, Σh is a 2-sphere, and Si is an annulus. However,
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then a and b cobound an annulus and are isotopic to each other, which

negates our hypotheses (see Figure 6).

Figure 6. Example of isotopic a and b when d = 2

d=3 In this case, δSi is three curves. Without loss of generality, let two copies

belong to the boundary curve b and one belong to the curve a. We claim

there is some curve γ in Σg that passes through b exactly once and has

a ∩ γ = ∅ Given a neighborhood N of b, select a pair of points p1, p2 in the

two components of N \ b. Since N is path-connected and b separates N ,

there exists some path PN between p1 and p2 that intersects b exactly once.

Since Si is path-connected and N \ b ⊂ Si, there exists a path Pc connecting

p1, p2 that does not intersect a or b. Take the union P to be γ. Then by

Theorem 2.8, a and b are not homologous in Σg and this negates our

hypotheses (see Figure 7).

Figure 7. Construction of P to show a and b are non-homologous when
d = 3

d=4 In this case, χ(Σh,4) = 2− 2h− 4 ≤ −2 for every h ≥ 0.

Thus, each Si contains some non-separating curve σi disjoint from both a and b.

Using this set of σi, construct Σ̃g with Lemma 2.2. Since a and b are homologous,

they cobound some Si, and a is part of ∂Si for at least two components Si, call

10



them S1 and S2. Since each component Si has some curve σi, the complement

Σ̃g \ (b̃ ∪ b̃′) does not separate ã and ã′ and so there exists some closed path γ that

passes through, in order, ã, σ̃1, ã
′, σ̃′

2 and back to ã without intersecting either lift of

b (Figure 8). By Theorem 2.8 ι(γ, ã) mod 2 defines a homomorphism

τ : H1(Σ̃g,Z2) → Z2. Then for the lifts ã, b̃, b̃′, we have by construction

τ(ã) = 1 ̸= 0 = τ(b̃) = τ(b̃′) and [b̃′] ̸= [ã] ̸= [b̃] so that fa(Σ̃g) ̸= fb(Σ̃g). □

Figure 8. The construction of γ on a double cover of Σ3

11



3. Coloring the Sphere Complex

We now show that the sphere complex is finitely colorable. Our proof follows

the alternate proof of Theorem 2.6. As noted in the introduction, we only need to

consider r ≥ 3. There are a few properties of 3-manifolds that require us to modify

the argument. First, an embedded sphere will always lift to a cover in 3-manifolds,

which reduces the complexity of defining X(Mr) (see Notation 3.1). This also

removes a case when initially selecting spheres a, b ∈ S(Mr), since there are no

covers where exactly one of a, b will lift. Additionally, homology classes and

cobordism classes are not equivalent in 3-manifolds.

3.1. Coloring with double covers (again). Our previous notation in

Section 2(Notation 2.3) translates straightforwardly with the exception of the

codomain X(Mr). Namely, there is no need to include 0 in the codomain as every

sphere lifts to every cover in 3-manifolds.

Notation 3.1. Let Mr,b be the connect sum of the 3-sphere with r copies of S1×S2

and b copies of B3 removed. If b = 0, we simply use Mr,0 = Mr. Define T (Mr) as

the set of all of connected double covers of Mr. For any sphere s embedded in Mr,

let the components of it inverse image under the covering map ρ : M̃r → Mr be s̃

and s̃′. Let X(Mr) be the set of all subsets A of H1(M̃r,Z2) with |H| ≤ 2 across all

M̃r ∈ T (Mr). Finally, let F (Mr) be the set of all functions f : T (Mr) → X(Mr).

Here we translate Lemma 2.4 to the sphere complex, resulting in a slightly

lower bound due to the smaller generating set of π1(Mr).

Lemma 3.2. For every r ∈ N, |T (Mr)| = 2r.

Proof. Double covers correspond to the index-2 subgroups of the first fundamental

group of a manifold π1(M) [Hat02, Theorem 1.38]. There is a bijection between the

set of index-2 subgroups of π1(Mr) and the set of homomorphisms ϕ : π1(Mr) → Z2

because index-2 subgroups are normal. Each such homomorphism ϕ is determined
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by its values on a generating set of π1(Mr). Since π1(Mr) ∼= Fr the free group of

rank r, there are r generators of π1(Mr). Then there are 2r homomorphisms ϕ and

therefore 2r connected double covers. □

Continuing, we translate Lemma 2.5 to the sphere complex. The overall logic is

the same as before, although we use an alternate way of determining the rank of

H2(M̃r,Z), and the lack of 0 in the codomain slightly modifies the calculations.

Lemma 3.3. The set of colors F (Mr) is finite for any given Mr and bounded above

by 2(9r−4)2r .

Proof. Since the domain of every function is T (Mr), which is finite, all that remains

is to show that the codomain X(Mr) is also finite, since |F (Mr)| = |X(Mr)||T (Mr)|.

Each element of X(Mr) is determined by a choice of a double cover M̃r and

some 1 or 2 element subset of H2(M̃r,Z2). Recall that χ(M) = σ3
i=0(−1)iβi(M) = 0

for any closed 3-manifold. Then β2(M) = β1(M) since both β0(M) = 0 and

β3(M) = 0. So the free rank of H2(M̃r,Z) = β2(M̃r) = β1(M̃r) = 4r − 2. Therefore,

|H2(M̃r,Z2)| = 24r−2 and for every choice of M̃r we have(
24r−2

2

)
= 28r−5 − 24r−3

choices of 2-element subsets and 24r−2 choices of 1-element subsets. Using the

number of possible choices of M̃r from Lemma 3.2, we arrive at

|X(Mr)| = 2r
(
(28r−5 − 24r−3) + 24r−2

)
≤ 29r−4.

Then we conclude that

|F (M̃r)| = |X(M̃r)||T (Mr)| ≤ 2(9r−4)2r . □

3.2. Proof of Theorem A. Similar to Section 2.2, we define the function

fa : T (Mr) → X(Mr) by

fa(Σ̃g) = {[ã], [ã′]}

13



where [ã] and [ã′] are the homology classes of the lifts of a to Σ̃g. We now prove

that ϕ : S(Mr) → F (Mr) given by ϕ(a) 7→ fa is a coloring.

Theorem A. For every r ≥ 3, there is a finite coloring ϕ : S(Mr) → F (Mr) of the

set of embedded essential spheres in Mr so that if a, b span an edge, ϕ(a) ̸= ϕ(b).

Thus χ(S(Mr)) ≤ 2(9r−4)2r by Lemma 3.3.

Proof. By Lemma 3.2 and Lemma 3.3, it remains to show that for any spheres a, b

adjacent in S(Mr), fa ̸= fb. To do so, we will show there exists some M̃r ∈ T (Mr)

such that fa(M̃r) ̸= fb(M̃r).

Let a, b be adjacent spheres in S(Mr). We will construct a cover M̃r ∈ T (Mr)

such that for any choice of lifts of a and b in M̃r, call them ã, b̃, will always have

[ã] ̸= [b̃] within H2(M̃r,Z2).

Since a, b are disjoint, there are at most three components of Mr \ (a∪ b). Label

the components W1,W2,W3 and notice that each one is of the form Mk,b with

β1(Wi) = k and 1 ≤ b ≤ 4. We will next show that each Wi contains some

non-separating sphere by showing that β1(Wi) ≥ 1. To do so, we show that for

every value of b, if β1(Wi) = 0, that is, Wi = M0,b, then we contradict our

hypotheses.

b=1 In this case, Wi is a subspace bounded by exactly one of a or b. Then

Wi = M0,1, that is S
3 with a ball removed, i.e., Wi is a ball itself. Then

either a or b bounds a ball and is non-essential, which negates our

hypotheses.

b=2 In this case, the two boundaries of Wi belong one each to a and b, since Wi

is connected. Then Wi = M0,2, that is, S
3 with two balls removed which is

homeomorphic to S2 × I. However, this implies that a and b are isotopic to

each other, which negates our hypotheses.
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b=3 In this case, δSi is three spheres. Without loss of generality, let two copies

belong to the boundary sphere b and one belong to the sphere a. We claim

there is some curve γ in Σg that passes through b exactly once and has

a ∩ γ = ∅. Given a neighborhood N of b, select a pair of points p1, p2 in the

two components of N \ b. Since N is path-connected and b separates N ,

there exists some path PN between p1 and p2 that intersects b exactly once.

Since Si is path-connected and N \ b ⊂ Si, there exists a path Pc connecting

p1, p2 that does not intersect a or b. Take the union γ = PN ∪ Pc. Then by

Theorem 2.8, a and b are not homologous in Σg, contradicting our

hypotheses.

b=4 In this case, there is only one component W1 and δS1 = a ∪ b. If W1 = M0,4,

then the original space Mr = M2. However, we are only considering r ≥ 3,

so again we have negated our hypotheses.

Thus, each Wi contains some non-separating sphere σi. Using this set of σi,

construct M̃r using Lemma 2.2. Notice that if a ∪ b does not separate Mr, then we

can show that [a] ̸= [b] via similar argument to case b = 3 above. Therefore a ∪ b

separates Mr.

We will construct a closed curve γ in Mr that intersects both ã and ã′ exactly

once while never intersecting either lift of b. If such a γ exists, then by Theorem 2.8

ι(γ, ta1) mod 2 defines a homomorphism τ : H1(M̃r,Z2) → Z2. Then for this γ by

construction we will have τ(ã) = 1 ̸= 0 = τ(b̃) = τ(b̃′) and the homology classes of

the lifts of a and b are distinct so that fa(M̃r) ̸= fb(M̃r).

Choose two components S1 and S2 such that a ⊂ ∂S1 and a ⊂ ∂S2. Notice that

M̃r \ (b̃ ∪ b̃′) does not separate ã and ã′, so there exists some closed path γ that

passes through, in order, ã, σ̃1, ã
′, σ̃′

2 and returning to ã without intersecting either

lift of b (see Figure 9). □
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Figure 9. Construction of γ in a double cover of M3
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4. Conclusion

This work establishes the upper bound of the chromatic number of S(Mr). A

companion lower bound was obtained by Bering, Ortiz, and Sanchez. Combined,

we obtain:

r log(r) ≤ χ(S(Mr) ≤ 29r−4.

Tightening this vast gap between these two estimates is a natural next task. The

techniques to use may be gathered from work by Gaster, Greene, and Vlamis

[GGV18, Theorem 1.5], who have found a stricter upper bound on χ(C(Σg)). Their

methods use induced subgraphs generated from primitive elements of H1(Σg,Z2),

allowing them to conclude that χ(C(Σg)) ≤ g4g.

The argument that gave us the upper bound for χ(Mr) should also naturally

extend to prove an upper bound for χ(Mr,d). This would then prove that the

sphere complex of any compact and orientable 3-manifold is finitely colorable. This

follows from Kneser’s Prime Decomposition theorem by virtue of the fact that any

sphere outside of the prime Mr,d components will be one of finitely many

prime-decomposition spheres and thus only increase the chromatic number of the

sphere complex by a finite amount.

Unlike in surfaces, up to homeomorphism there is more than one connected

orientable codimension 1 manifold that can be embedded in a 3-manifold. Instead

of using spheres to build S(Mr), fix g ≥ 1 and construct the graph with vertices

determined isotopy classes of essential embedded surfaces Σg and edges between

classes with disjoint representatives. The major difference in employing the

approach we use here will be in ensuring that the non-separating spheres still exist

to be able to construct an appropriate double cover. Additionally, while spheres

will always lift in a double cover, some Σg may not always lift and so the

techniques applied in the proof of Theorem 2.6 may be needed.
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Another analog of the curve complex to investigate is the free factor complex of

Fn. Its vertices are the proper free factors of Fn and its edges exist between two

factors when one is a proper factor of the other. Like the sphere complex, Out(Fn)

also acts on the free factor complex, but is directly related to Fn and as such,

provides greater algebraic insight into Out(Fn) while the sphere complex gives more

insight into Out(Fn)’s geometric nature. Bestvina and Feighn [BF14] give a finite

coloring of the free factor complex. Their proof relies on the Z2 homology and

differences in double covers, the same two factors which allowed this proof to

succeed.
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