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Fig. 3. NLCD LULC over the UMCW in a) 1992; b) 2001, c) 2006, d) 2011.

Fig. 4. IDRISI simulated LULC patterns over the UMCW in: a) 2030; b) 2040, c) 2050.
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reconnaissance surveys, one in 2007–2008 (OSIP I) and the other in
2010–2011 (OSIP II), to acquire high spatial resolution (3 m or less)
airborne imagery. In this study, we used the 2007 OSIP I as the co-
variable for ST-Cokriging sharpening and the 2011 OSIP II imagery for
validating the sharpening results. The 2007 OSIP I imagery has near
infrared (NIR), red, and green bands (Fig. 5). Ground control points
were collected by the OSIP airborne imagery survey group to geo-reg-
ister the airborne imagery and validate the imagery. According to
OGRIP (2017), the overall accuracy of the imagery product is within
0.0254 m.

We used object-oriented classification method to classify the high
resolution OSIP airborne images to the Anderson classification system.
When compared with the pixel-based classification, object-oriented
classification is better suited to extract land use objects, such as
buildings, and its results have better clarity and more contiguous
shapes. With appropriate training samples and parameters, the method
has an excellent capability to delineate objects at a local scale (Jacquin
et al., 2008). It is therefore widely used for automatic and semi-auto-
matic LULC classification in urban areas (Liu et al., 2010; Zhang et al.,
2014).

The object-oriented classification on the OSIP high resolution air-
borne imagery was performed using eCognition (Trimble, 2017). To
illustrate the results of our analyses in more detail, we chose an area
near Liberty Township, the fastest growing area in the UMCW with
rapid LULC changes, as a zoomed-in enlarged area (Fig. 6). Multi-re-
solution classification was used because the high resolution airborne
imagery contains NIR, red, and green bands. To obtain the best classi-
fication results, we set the object size to 200, which was the average
number of pixels for objects in the study region. To calibrate the clas-
sification parameters, a sample of classification results was compared to
the NLCD 2006 LULC data (the selected training object shown in Fig. 6b

and c). By adjusting the coefficients of the shape and compactness of the
image objects to 0.1 and 0.5 respectively, a new LULC map with a finer
spatial resolution (3 m) was produced (Fig. 6a and d). For validation of
the classification results, we used some easily identifiable targets, such
as water bodies, on the image. Ground truth validation ascertains that
these targets are well delineated in our classification results; they are
more distinct, clearly discernable, and with better shapes.

4. Results and discussion

4.1. Estimation of ST-Cokriging equations

The first step of ST-Cokriging was to estimate the spatio-temporal
covariance structure using a primary variable (the time-series NLCD
LULC data with a 30-m spatial resolution) and a secondary variable (the
one frame of OSIP I LULC airborne imagery with a 3-m spatial resolu-
tion). The results of estimated spatial and temporal empirical semi-
variograms derived from Eqs. (4) and (5) are shown in Figs. 7a and b.

The exponential function was chosen to model both the spatial and
temporal semi-variograms and to characterize the covariance structures
because it provided the best fit to the empirical semi-variograms.
Specifically:

=h h( ) 219 [1 exp
194.4

]s s
s

(6)

and:

=(h ) 348 [1 exp h
14.4

]t t
t

(7)

As shown in Fig. 7a and b, the sill values, which represent the
spatial/temporal variances of the variable, are 219 and 348 for the

Fig. 5. 2007 OSIP I airborne imagery over the UMCW with NIR false color combination at a 3-m resolution.
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spatial and temporal models, respectively. According to Cressie (1993),
the effective range is the distance at which the semi-variance reaches
95% of the sill. In this research, the spatial effective range value is
583.2 m and temporal effective range is 43.2 years. Because we were
modeling the LULC change over a long period, the measurement error
(nugget effect) are considered to be infinitesimal in the variogram fit-
ting (Kang et al., 2009).

4.2. Sharpening results and validation

To test and validate the spatio-temporal sharpening performance of the
Cokriging algorithm, we used the 2001, 2006, and 2011 NLCD LULC data
and the high resolution 2007 object orientation classification results of the
OSIP I airborne image as the source data and applied the ST-Cokriging

algorithm to generate a sharpened LULC map of 2011 at a 3-m spatial
resolution. Fig. 8 shows the results of the validation. Here, we included the
2011 NLCD LULC map (Fig. 8a) to illustrate the coarse resolution source
data. We also included the results of the enlarged area near Liberty
Township to highlight the sharpening result from ST-Cokriging. Fig. 8b
shows the secondary co-variable of OSIP I airborne imagery classification
results. From the figures, it is unequivocal that the airborne imagery
classification result (Fig. 8b) has more detail information, and it can depict
the spatial pattern more clearly than the NLCD LULC data.

Fig. 8c is the sharpened 2011 LULC probability map at a 3-m spatial
resolution calculated by the ST-Cokriging algorithm. From the spatio-
temporal structure, the probability value of each pixel was generated,
which represents the probability of change between the two adjacent
class codes in the spatio-temporal domain of the LULC trend.

Fig. 6. a) Object-oriented classification results for the 2007 OSIP I airborne image over the UMCW, b) NIR false color combination imagery for an enlarged area (near
Liberty Township) of the study region, c) traning data objects for the object-oriented classification over the same area, and d) object-oriented classification results
over the same area.

Fig. 7. a) Spatial semi-variogram and exponential fitting model, b) Temporal semi-variogram and exponential fitting model.
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