Modular Approach to Big Data using Neural Networks

Animesh Dutta
San Jose State University

Follow this and additional works at: http://scholarworks.sjsu.edu/etd_projects

Recommended Citation
http://scholarworks.sjsu.edu/etd_projects/315

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact scholarworks@sjsu.edu.
Modular Approach to Big Data using Neural Networks

Advisor: Dr. Chris Tseng

Animesh Dutta
May 2013

A Writing Project Presented to The Faculty of the Department of Computer Science, San Jose State University. In Partial Fulfillment of the Requirements for the Degree: Master of Science
The Designated Committee Approves the Project Titled

Modular Approach to Big Data Using Neural Networks

By

Animesh Dutta

Approved for the Department of Computer Science

San Jose State University

May 2013

Dr. Chris Tseng

Dr. Tsau Young Lin

Mr. Naresh Parmar

Department of Computer Science

Department of Computer Science

Member of Technical Staff, PayPal
ABSTRACT

MODULAR APPROACH TO BIG DATA USING NEURAL NETWORKS

Machine learning can be used to recognize patterns, classify data into classes and make predictions. Neural Networks are one of the many machine learning tools that are capable of performing these tasks. The greatest challenges that we face while dealing with the IBM Watson dataset is the high amount of dimensionality, both in terms of the number of features the data has, as well the number of rows of data we are dealing with. The aim of the project is to identify a course of action that can be chosen when dealing with similar problems. The project aims at setting up and experimenting with different strategies of training neural networks in order to reduce training time and increase prediction accuracy. The project will contrast the advantages and disadvantages of using these modular approaches and provide a completely open source implementation of the system.
ACKNOWLEDGEMENTS

I would like to thank Dr. Chris Tseng, my project advisor, for his continuous support and expert guidance throughout the course of the project. I would like to thank my committee members, Dr. T.Y. Lin and Mr. Naresh Parmar, for their feedback and suggestions. At last, I would like thank my friends for their encouraging support through the project.
Table of Figures

Figure 1: Neural Network Training Phase ... 12
Figure 2: Predicting with a Neural Network ... 12
Figure 3: Matlab Start Screen ... 13
Figure 4: Setting the Current Folder ... 14
Figure 5: Selecting the Data .. 14
Figure 6: Import Data Wizard... 15
Figure 7: Matlab workspace populated with variables... 16
Figure 8: Data in a Matlab Worksheet
Figure 9: Neural Network Start Screen
Figure 10: Neural Network Pattern Recognition Tool
Figure 11: Select Data for Training
Figure 12: Dividing data into validation and test data
Figure 13: Neural Network Architecture and Hidden Neurons Setting
Figure 14: Training the Neural Network
Figure 15: Neural network being trained
Figure 16: Network Evaluation
Figure 17: Neural Network Results
Figure 18: Neural Network Diagram
Figure 19: Script generated for the Neural Network
Figure 20: Results in the workspace
Figure 21: Simplest method to train a Neural Network
Figure 22: Bottleneck Neural Network
Figure 23: Creating Balanced Datasets
Figure 24: Mini Batch Training
Figure 25: Amazon Web Services Console
Figure 26: Amazon EC2 Dashboard
Figure 27: Elastic IP page
Figure 28: Selecting an Elastic IP for EC2
Figure 29: Create New Instance
Figure 30: Choose an AMI
Figure 31: Instance Details
Figure 32: Advanced Instance Options
Figure 33: Storage Device Configuration
Figure 34: Naming the device
Figure 35: Creating a new Key Pair
Figure 36: Selecting Security Group
Figure 37: Instance Summary for Review
Figure 38: Associating Elastic IP to Instance
Figure 39: Creating a snapshot
Figure 40: Creating a Snapshot
Figure 41: Attach a Volume
Figure 42: Batch Training
Figure 43: Training on Balanced Data Sets
Figure 44: Training Using RProp on MiniBatch: MSE vs Epochs
Figure 45: Training on Data with High Noise: MSE vs. Epochs
Figure 46: Varying Hidden Neurons: MSE vs. Epochs
Figure 47: Training Time
Figure 48: Prediction Time
1. Project Description

1.1 Introduction and Problem Statement

The project derives itself from the IBM Great Minds Challenge. The project involved using machine learning algorithms to assign TRUE/FALSE labels to question/answer pairs that had been broken down into feature vectors, or series of numbers that represent the data of the question/answer pairs.

IBM Watson analyzes the feature vectors of a potential answer and assigns a TRUE if it believes the answer is correct, and a FALSE if it believes the answer is incorrect. Similarly, the project focused on the creation of a machine learning algorithm that can assign these TRUE/FALSE labels to a series of question/answer feature vectors.

Out of the many machine learning tools, I chose to use neural networks. Neural networks are used in machine learning for the prediction of data. In order to make predictions, neural networks need to be trained and retrained in order to increase their prediction efficiency.

The data used to train neural networks is generally represented as feature vectors, the feature vector comprises of features that are values representing a certain feature/property of the data. These features cumulatively determine the final value for the data. The neural network is thus trained using these feature vectors and fine-tuned so that neural network output matches the correct result. When the neural network reaches a stage where its prediction rate is within a certain desired error percentage that is reasonably low, then the neural network is said to have been trained.
In case of big data, the dimension of data is a factor that limits the efficiency of neural networks. The data can have a large number of features; for example IBM Watson data has 342 features. These features can be visualized as columns when comparing with a row and column based data format. Secondly, there might be a large volume of data, that is, a large number of rows of data.

In both these cases, proper training of neural networks becomes a challenging process. My project aims at finding out and comparing different methods to train neural networks using big data in order to make a successful prediction. The project will involve analyzing the data in order to determine how it can be used to train the neural network for making successful predictions using big data and over the cloud.

1.2 Project Goal

The primary goal of the project will be to increase prediction rates and secondly to speed up processing/turnaround times. The process will involve chopping up data both based on rows and columns, controlling the amount of data used for training, splitting feature vectors or using feature vector reduction techniques, and then training the neural network and finally integrating and validating the results achieved.

The project also aims at finding out an open source framework that can successfully be run on the cloud in order to accommodate the large amount of data volume and processing required for training neural networks.

1.3 Neural Networks
Artificial neural networks are modeled on neural networks present in the brain. Biological neural networks are an interconnection of neurons. Similarly, artificial neural networks are an interconnection of nodes or neurons.

A neural network consists of 3 main components, the input layer, the output layer and the hidden layer. The hidden layer consists of nodes that are interconnected. The connections of these nodes have weights assigned to them, which in turn determine the output. Different algorithms are used to adjust these weights during the training process so that the desired output is achieved.

![Neural Network Architecture](image)

Figure: Neural Network Architecture

The data used to train neural networks is divided into the inputs and the target output.

- At the start the neural network is assigned random weights for its connections.
- The output achieved by using the given input is compared to the target output.
- The weights are adjusted to reduce the difference between the target and output to the minimum.
• This process is repeated until a low enough difference is achieved.

• This is a stopping condition known as the desired error

• Another stopping condition is the maximum number of training epochs.

Training and learning functions are algorithms that are used to automatically adjust the neural network’s weights and biases. The goal of the training function is to reduce the error to a minimum, thus we want to find a minimum value of error. If we move in the direction of the gradient we will find the local maxima. This is known as gradient ascent. Thus if we move in the opposite direction we should be able to find the local minima. This technique is known as the gradient descent. Certain neural network functions can be given a parameter that can decide the rate at which the gradient descent is done. This parameter is known as the Learning Rate. In algorithms that change the weights and biases of neurons iteratively, the learning rate decides the step size that needs to be taken during descent. Thus having a very low learning rate we will have better accuracy for the network, but we will take a lot of time to reach to the minima due to the small step size. On the other hand, when the leaning rate is large, we might get close to the minima very fast but may just oscillate around the minima and never reach it. Thus the choice is a learning rate is an important parameter for neural network training.

2. Project Design

2.1 Design Overview

Neural networks are well equipped to handle classification and prediction problems. In our case, the data has two classes, true and false. In order to be able to classify the data a neural network needs to be trained to recognize the pattern and identify a class of data. After initial training, we
verify the neural networks classification by testing it on the data that it has been trained on already, this is known as the testing phase or the validation phase. If the network does not meet the required validation standards, then further training of the network is required. The accuracy of the network is predicted by measuring the Mean Squared Error (MSE).

Figure 1: Neural Network Training Phase

Figure 2: Predicting with a Neural Network

Once the network has started making predictions below the desired error rate, the training is stopped and the network is ready to make actual predictions on real data.

2.2 Basic Implementation using Matlab

Setting up Matlab

Matlab provides a useful interface for creating and training neural networks. We require both Matlab and the neural network toolbox for the installation of Matlab.
1. After the setup, start Matlab to obtain a blank workspace and Matlab console.

Figure 3: Matlab Start Screen

2. The console shows up with an EDU prompt for the student version.

Importing the Data

1. Set the current folder to the desired folder.

2. The contents of the current folder will be displayed in the current folder window.
3. On the menu, go to File -> Import Data

4. Browse for the data that you want to import into the Matlab workspace.
4. Use the Import wizard to select data and create variables in the workspace.

![Image of Import Wizard]

Figure 6: Import Data Wizard

5. Similarly, import all the required data into the Matlab workspace as variables.

6. The workspace should now be filled with the required variables that can be used within Matlab.
Importing Data from a text or CSV file

1. Select the desired CSV or text file using the File -> Import Data command.

2. This will open the CSV file as a worksheet within Matlab.

3. The worksheet can now be used to select the required data from the worksheet and then import it into Matlab as a variable.
4. By default, the entire data is selected for import.

5. On clicking the import button will import the data specified in the range to get imported as a variable into the Matlab workspace.

6. The range can be altered to select only specific data into the workspace.

7. The un-importable cells section can be used to specify rules on how to handle cells that are not in the correct format and cannot be imported into Matlab.

Starting the Neural Network Toolbox

1. Use the command “nnstart” in order to start the neural network interface.
2. This brings up the neural network start Interface.

3. At this stage we can chose between the different kinds of neural network tools available to us.

5. The Pattern Recognition screen provides an overview of the feed forward neural network that will be used for pattern recognition. Click “next” on this screen.

6. The next screen involves selecting data for neural network training. Inputs and target data needs to be selected.

7. This data can be selected from variables present in the Matlab workspace.

8. We must keep in mind that the number of samples of data must be the same for both the inputs and targets.
Selecting the Data

9. Next we divide the data into Training, Validation and Testing data.

10. The interface lets us specify the percentage of data we wish to divide.
11. The next screen lets us specify the number of hidden neurons in the hidden layer. The default number is 10.

12. This screen also displays the architecture of the neural network.
Neural Network Architecture

13. The next screen is where we start training the neural network.

14. This screen also shows the Mean Squared error and the Percentage error.

15. The network can be retrained until we get a desired and low value for both these parameters.
Neural Network Training

Figure 14: Training the Neural Network

16. The interface showing the neural network training appears when we click on the train button.

17. The interface provides the different algorithms that being used to train the neural network and measure its performance.
18. The data division algorithm specifies how the data was divided into the training, validation and testing sets. We use the default function that divides the samples randomly.

19. The training function specifies the function being used for training the neural network.
20. The performance is measured using the mean squared error, the lower the error, the better the performance.

21. An epoch of training is defined as a single presentation of all input vectors to the network. The network is then updated according to the results of all those presentations.

Network Evaluation

![Network Evaluation Image]

22. The next screen allows us to evaluate and retune the network if we are not satisfied with the performance of the network.
23. At this stage we have the option to change the number of hidden neurons.

24. We can also perform additional tests on the trained neural network by providing additional data for testing.

Saving Results

![Image of Neural Network Pattern Recognition Tool](image)

Figure 17: Neural Network Results

25. We can now save the results of the neural network training to our workspace as variables.

26. We can view the architecture of the neural network by clicking on the Neural Network diagram button
Generating Scripts

26. We can also generate a script that can be saved for later use.

Figure 19: Script generated for the Neural Network
Saving the Results into Workspace

27. Saving the results saves the results in the workspace.

![Figure 20: Results in the workspace](image)

28. Net is the network structure of the trained neural network that can be used later.

29. Output is the output that has been predicted by the trained neural network for the given input data.

2.3 Performance Improvement Strategies

The simplest way to train a neural network is to provide the complete data-set all together and train the neural network with the different training algorithms available. This is the standard training technique and is able to provide very accurate results for most cases. In the case of large amounts of data, the time taken to train a network and reach sufficient error can be very high. This is where we can optimize training in order to reduce the training time and try to retain the accuracy of the neural network.
Bottle-Neck Neural Networks

A Neural network which has an extra hidden layer with a very small number or neurons as compared to the input neurons is a bottleneck neural network. In [1] the author presents a bottleneck network that has a bottleneck that is equal to the range of the output values. The bottleneck network will thus have 2 hidden layers. The first hidden layer immediately present after the input layer will be the bottleneck layer, followed by a second hidden layer that connects to the output layer.
In case of our data, the data contains a large number of false data samples and a relatively low number true data samples. Thus the network is hardly exposed to any true data samples during the entire training process. In order to make the training more effective we can create a new dataset that represents both the true and false cases equally. In general, [1] talks about creating a new dataset that has equal representation of all the separate classes. This technique also reduces the size of the dataset that is needed to train the neural network sufficiently.

![Figure 23: Creating Balanced Datasets](image)

Batch Training
In case of batch training the weights are updated after an entire pass of the training dataset. This produces better adjustment for weights at each epoch but each epoch takes a much longer time as the entire training data set needs to be read.

Online Training

Online training is a training technique that is suitable for large data-sets with a large number of variables. The weights are updated immediately after each training record is read. This technique
can reach the desired error rate much faster than the Batch Training method. However, the changes to the weights during the online training methods are small at each step.

Mini Batch Training

Mini Batch training is the same as batch training except that the data has now been divided into small modules during the data preparation stage. Thus the system updates its weight much more frequently, providing a middle path between the online training and Batch Training Methods.

![Mini Batch Training](image)

Online Training with Preliminary Batch Training

An alternative is to train the neural network with a significant portion of the dataset using the batch training technique. Then switch to adaptive training for the rest of the dataset. This method also provides a combination of the advantages of both batch training and online training. The batch training will allow the neural network to converge in the correct direction and then online training can fine-tune quickly to the desired error rate.

Mini- Batch Training with Re-Sampling
Instead of training the entire dataset at once, mini batch training divides the data into smaller subsets. Instead of creating mini-batches by simply chopping down the data into smaller modules, we can decide on the module size and then populate that batch by randomly selecting the records from the entire data-set. This method is able to create a smaller statistical representation of the entire dataset and thus requires much less training time.

Multiple Experts Network

The multiple experts’ network is, as the name suggests, a network consisting of multiple trained systems. The multiple experts’ network combines different networks trained via different techniques to make predictions on a dataset. A gating network is used to combine the results obtained from each of the expert networks into a final result for the prediction.

3. Project Implementation

3.1 Selecting an Open Source Neural Network Framework

During CS297 I used the Matlab neural network toolbox to implement a neural network and predict the results for the output file. Matlab is commercial licensed software and the costs of obtaining a license for running Matlab over a cloud are very high.

I explored the following options for neural network packages that were completely open source and could be installed over the cloud without licensing issues.

1. **GNU Octave Neural Network Package**:

 GNU Octave is an open source alternative to Matlab, its aim is to provide similar functionality to that of Matlab but remain as an open source project. It has many well written packages that
replicate Matlab functionality. However, the neural network package for Octave is very basic and only provides us with a single training function. The project is no longer actively supported and has compatibility issues with new versions of Octave.

2. Encog

Encog is an open source neural network framework. It has extensive documentation and examples available. It is primarily written in Java and maintained and developed by Heaton Research. The functionality provided by this framework is extensive. However, it is tied to commercial support and books as well. Thus, in order to get support for the project you need to purchase books that have been written for the framework.

3. Neuroph Studio

Neuroph is a Java library for Neural Networks. Neural networks can be implemented using simple Java programs. Neuroph seems more promising as it only requires basic Java knowledge and with a basic understanding of neural networks, the code is self-explanatory. The framework was primarily developed as a GUI for neural networks.

4. Fast Artificial Neural Network (FANN)

This is a neural network framework written in “C”. It provides all the necessary functionality required for neural networks. It is mainly developed to run as a console application like a C program. It is completely open source.

Both Neuroph and Fast Artificial Neural Network (FANN) were good candidates for my project. I selected FANN since it is a C Framework and it promised faster runtime than Neuroph that is written in Java.
Secondly, FANN libraries are simple C programs that can be modified as per my needs. This ability to customize was a major deciding factor for my selection.

3.2 Setting-Up Amazon EC2

The Amazon Cloud Compute, popularly known as EC2, is a remote machine that is easily scalable and provides computational power that can be scaled as per the needs of the program. Since we needed a large amount of main memory and computational power beyond the scope of personal laptops or home desktops, I decided to use amazon’s ec2 for my computation. An EC2 instance is similar to a remote server that you can access remotely. Specifically for my experiments I used a machine that had 15 gigabytes of main memory and 8 processing cores.

The procedure to setup an Amazon EC2 instance is as follows:

1. Sign up for the Amazon web services account.

2. Once the account is setup, navigate to the Web Services Console.
3. Select the EC2 option from the Dashboard. This will lead you to the EC2 dashboard.

4. From the menu on the left select Elastic IP’s under the Network and Security Tab. Elastic IP’s can be associated with an account and then associated with the instance when the instance is
started. We need to associate an elastic IP as it takes some time to register the first time we set it up with our account.

![Elastic IP page](image)

Figure 27: Elastic IP page

5. Click on the Allocate new Address button. It will prompt you for the type of Elastic IP (EIP) that you wish to allocate. Select EC2 from the drop down provided.
6. Navigate back to the EC2 dashboard, and under the create instance header, select launch new instance.

7. Select the classic wizard from the given options.
8. We select the Ubuntu server 12.04 LTS as our AMI (Amazon Machine Image).

9. On this screen we change the Instance type to M1 Extra Large as this is the size of the instance that we want to use.
10. We do not need to change any specific details on the instance and can continue through this screen as well as the storage configuration screen that comes next.
11. We can give a name to the device here or add any other parameters that we may find useful.

12. On the next screen we need to create a new key pair, or use an existing one if present. This key will be used to access the Amazon EC2 instance and should be downloaded and stored in an accessible place on your local computer. Also remember to set the permissions on this file to 400.
13. Select the default security group; we will only need the port for SSH for connecting to the EC2 instance.

14. On this screen we can review the instance details before we launch the instance.
15. Once the device is up and running, we can now associate the Elastic IP to this instance. The Elastic IP can then be used to access this device from terminal.

16. Go to the Elastic IP dashboard. Select the Elastic IP you wish to associate with the instance, select associate Address button at the top. The dashboard prompts for the Instance that you wish to associate with this Elastic IP.

![Figure 38: Associating Elastic IP to Instance](image)

17. Elastic IP addresses are released each time the instance is stopped and need to be associated with the instance when it starts.

Increasing the size of the storage device.
The default storage disk that is provided is an 8 GB device. To increase the storage capacity on this device, we can create a new volume as follows. This is an optional procedure that we can follow if we need more storage for our instance.

1. Select Volumes from the menu on the left under the header Elastic Block Storage.
Figure 39: Creating a snapshot

2. Select the default volume that is present and from the actions dropdown at the top, select create snapshot. Give the snapshot a name and description when prompted.

3. Now create a new volume using the create volume button. When prompted, select standard in the device type, input the size you need. The availability zone should be the same as the zone of your instance. In the snapshot, select the snapshot that you just created. Go ahead and click “create”.
4. Now we are ready to detach one volume and attach the new one to our instance. Make sure that the instance is Stopped when we do this.

5. Select the old volume that we need to detach. From the actions drop down select detach volume.
6. Now select the new volume that we just created. From the Actions dropdown, select Attach Volume.

7. Select the Instance that we need to attach the new volume. Set the device to /dev/sda1 in order to make this the boot device.

8. The new volume has now been attached to the device and the instance now has increased disk space.

3.3 Setting-Up Fast Artificial Neural Networks on Amazon EC2

Pre-requisites:
1. Make sure that you have cmake installed:
   ```bash
   sudo apt-get install cmake
   ```

2. Also install libgtk2.0-dev using the command
   ```bash
   sudo apt-get install libgtk2.0-dev
   ```

Installation

Copy the Fast Artificial Neural Networks Directory to your Amazon EC2 machine using secure copy (SCP).

3. Using the terminal go to the top level of the FANN directory and run the following commands

4. `cmake .`

5. `sudo make install`

6. `sudo ldconfig`

7. To confirm successful installation navigate to the examples directory and execute the following:
make runtest

8. This should result in the running of some sample program that trains and predicts on some sample data.

9. If you are able to see the results, then you have successfully configured FANN on your machine.

3.4 Data Preparation

The given data was in the Comma Separated Value format. The FANN framework requires that training data be in a specific format. For FANN training file, the first row of the file should contain three columns, the number of training samples provided, number of input variables and number of output variables. Starting from the second row, the row should contain the input variables that are delimited by space, the output for these set of input values should be in presented in the next row. Also, the framework only accepts numeric values, so the output values of true and false need to be interpreted as zero’s and one’s.

For creating balanced datasets we need to separate the true samples from the false samples and then create a new mini batch dataset from samples from both the true dataset and the false dataset. After the separation we can create the dataset we need for the experiments. We now have the following datasets:

- IBM Training Data Set (approx. 900,000 rows)
 - False Training Data
 - True Training Data (approx. 4000 rows)
- IBM Prediction Data Set (approx. 400,000 rows)
3.5 Training the Neural Network Using FANN

The overall IBM Watson dataset is a 3 GB CSV (comma separated value) file. This file has been separated into two parts for prediction and training purposes. This file has 1.3 million rows of data.

The training part is approximately 2/3’s of the total file, which we refer to as the IBM Training Data set and 1/3 of the file is used for prediction, which we refer to as the IBM Prediction data set.

The simplest way of training a neural network is to simply supply the entire training data set at once and let the network train on it until a desired error is reached. The number of hidden neurons is kept constant for the experiment. There are 683 hidden neurons in the hidden layer, that is (2n+1) neurons, where n is the number of features.

This method is the base case for my experiments. The entire IBM Training set is used to train the network, and then the prediction is made on the entire Prediction dataset.

The fast artificial neural network is a library written in C. Thus for training a neural network using FANN can be done by writing a C program that uses the standard FANN functions. The Steps involved for creating and training a neural network using FANN are as follows:

1. An empty neural network structure can be created using the following in-built FANN data structure
struct fann *ann = fann_create_standard(num_layers, num_input, num_neurons_hidden, num_output);

where:

fann_create_standard = function for creating a neural network.

ann = name of the network.

Num_layers = number of layer in the neural network, this includes the input layer, the hidden layers, and the output layer.

Num_input = number of input variables, or neurons in the input layer.

Num_output = number of outputs, or neurons in the output layer.

2. Optionally, we can set the activation functions for the different layers by using the “fann_set_activation_function_hidden” or “fann_set_activation_function_output” functions.

3. We can also set the training function at this stage.

4. We are now ready to train the neural network. We need to simply provide the file that contains the training data. We use the function

fann_train_on_file(ann, filename, max_epochs, epochs_between_reports, desired_error);

fann_train_on_file : function used for training the network on training data from a file.

Filename: the filename (string) that contains the training data.

Max_epochs: the maximum number of epochs we want the training to continue. This is a stopping condition.
Epochs_between_reports: the program will report error after this interval.

Desired_error: this is the condition to successfully stop training.

5. Once the training is complete we can save the network using the function

Fann_save (neuralnet, filename)

3.6 Training Experiments using FANN

The following training experiments were performed on the dataset. The aim of the training experiments was to reduce the training time and improve the accuracy of the final predictions made.

1. Train on IBM true training Data with 228 hidden neurons in the hidden layer.

Max epochs 500000. Desired error: 0.0049999999.

<table>
<thead>
<tr>
<th>Epoch</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.312028</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

Time Taken 11.790000 seconds

2. Train on all False Training Data with 228 hidden neurons in the hidden layer.

Max epochs 500000. Desired error: 0.0049999999

<table>
<thead>
<tr>
<th>Epoch</th>
<th>Error</th>
</tr>
</thead>
</table>

Table 1: Batch training of true data

<table>
<thead>
<tr>
<th>Epoch</th>
<th>Error</th>
</tr>
</thead>
</table>

Table 2: Batch Training of False Data

<table>
<thead>
<tr>
<th>Epoch</th>
<th>Error</th>
</tr>
</thead>
</table>
1 0.328547
2 0

Time Taken 2519.089844 seconds

3. Training Batches of IBM True training data followed by the entire training dataset and then the entire true training dataset again.

Max epochs 500000. Desired error: 0.0049999999.

Table 3: Batch training of true and false batches

<table>
<thead>
<tr>
<th>Epoch</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.995213</td>
</tr>
<tr>
<td>2</td>
<td>0.983665</td>
</tr>
<tr>
<td>3</td>
<td>0.136118</td>
</tr>
<tr>
<td>4</td>
<td>0.008193</td>
</tr>
<tr>
<td>5</td>
<td>0.619769</td>
</tr>
<tr>
<td>6</td>
<td>0.558391</td>
</tr>
<tr>
<td>7</td>
<td>0.004787</td>
</tr>
</tbody>
</table>

Time Taken 19636.681641 seconds

4. Training on Falsified data mixed with True data. When mixed in an equal percentage, the network can never reach the desired error.

Table 4: Training on Falsified data

<table>
<thead>
<tr>
<th>Epoch</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.282506</td>
</tr>
<tr>
<td>2</td>
<td>0.200073</td>
</tr>
<tr>
<td>3</td>
<td>0.200073</td>
</tr>
<tr>
<td>4</td>
<td>0.200073</td>
</tr>
<tr>
<td>5</td>
<td>0.200073</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
</tr>
<tr>
<td>6</td>
<td>0.300657</td>
</tr>
<tr>
<td>7</td>
<td>0.173688</td>
</tr>
<tr>
<td>8</td>
<td>0.196442</td>
</tr>
<tr>
<td>9</td>
<td>0.199701</td>
</tr>
<tr>
<td>10</td>
<td>0.183086</td>
</tr>
<tr>
<td>11</td>
<td>0.361739</td>
</tr>
<tr>
<td>12</td>
<td>0.181087</td>
</tr>
<tr>
<td>13</td>
<td>0.187449</td>
</tr>
<tr>
<td>14</td>
<td>0.196585</td>
</tr>
<tr>
<td>15</td>
<td>0.183785</td>
</tr>
<tr>
<td>16</td>
<td>0.16917</td>
</tr>
<tr>
<td>17</td>
<td>0.196298</td>
</tr>
<tr>
<td>18</td>
<td>0.163221</td>
</tr>
<tr>
<td>19</td>
<td>0.160709</td>
</tr>
<tr>
<td>20</td>
<td>0.16001</td>
</tr>
<tr>
<td>21</td>
<td>0.176327</td>
</tr>
<tr>
<td>22</td>
<td>0.163362</td>
</tr>
<tr>
<td>23</td>
<td>0.159997</td>
</tr>
<tr>
<td>24</td>
<td>0.162346</td>
</tr>
<tr>
<td>25</td>
<td>0.159547</td>
</tr>
<tr>
<td>26</td>
<td>0.161851</td>
</tr>
<tr>
<td>27</td>
<td>0.160139</td>
</tr>
<tr>
<td>28</td>
<td>0.163535</td>
</tr>
<tr>
<td>29</td>
<td>0.160656</td>
</tr>
<tr>
<td>30</td>
<td>0.158725</td>
</tr>
<tr>
<td>31</td>
<td>0.158323</td>
</tr>
<tr>
<td>32</td>
<td>0.158957</td>
</tr>
<tr>
<td>33</td>
<td>0.160555</td>
</tr>
<tr>
<td>34</td>
<td>0.159454</td>
</tr>
<tr>
<td>35</td>
<td>0.159011</td>
</tr>
<tr>
<td>36</td>
<td>0.158669</td>
</tr>
<tr>
<td>37</td>
<td>0.159198</td>
</tr>
<tr>
<td>38</td>
<td>0.15932</td>
</tr>
<tr>
<td>39</td>
<td>0.158845</td>
</tr>
<tr>
<td>40</td>
<td>0.158657</td>
</tr>
<tr>
<td>41</td>
<td>0.158775</td>
</tr>
<tr>
<td>42</td>
<td>0.159072</td>
</tr>
<tr>
<td>43</td>
<td>0.160326</td>
</tr>
<tr>
<td>44</td>
<td>0.158104</td>
</tr>
</tbody>
</table>
5. Training on a balanced data set:

Only the first 50 epochs are presented.

Table 5: Training on the Balanced dataset

<table>
<thead>
<tr>
<th>Epochs</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.330194</td>
</tr>
<tr>
<td>2</td>
<td>0.125</td>
</tr>
<tr>
<td>3</td>
<td>0.625</td>
</tr>
<tr>
<td>4</td>
<td>0.12317</td>
</tr>
<tr>
<td>5</td>
<td>0.625</td>
</tr>
<tr>
<td>6</td>
<td>0.624676</td>
</tr>
<tr>
<td>7</td>
<td>0.124891</td>
</tr>
<tr>
<td>8</td>
<td>0.125002</td>
</tr>
<tr>
<td>9</td>
<td>0.116761</td>
</tr>
<tr>
<td>10</td>
<td>0.624089</td>
</tr>
<tr>
<td>11</td>
<td>0.623223</td>
</tr>
<tr>
<td>12</td>
<td>0.598423</td>
</tr>
<tr>
<td>13</td>
<td>0.122669</td>
</tr>
<tr>
<td>14</td>
<td>0.120844</td>
</tr>
<tr>
<td>15</td>
<td>0.107279</td>
</tr>
<tr>
<td>16</td>
<td>0.613381</td>
</tr>
<tr>
<td>17</td>
<td>0.609236</td>
</tr>
<tr>
<td>18</td>
<td>0.463886</td>
</tr>
<tr>
<td>19</td>
<td>0.113532</td>
</tr>
<tr>
<td>20</td>
<td>0.111817</td>
</tr>
<tr>
<td>21</td>
<td>0.09927</td>
</tr>
<tr>
<td>22</td>
<td>0.553946</td>
</tr>
<tr>
<td>23</td>
<td>0.538812</td>
</tr>
<tr>
<td>24</td>
<td>0.27922</td>
</tr>
<tr>
<td>25</td>
<td>0.102347</td>
</tr>
<tr>
<td>26</td>
<td>0.116385</td>
</tr>
<tr>
<td>27</td>
<td>0.115937</td>
</tr>
</tbody>
</table>
4. Measuring Performance Using Time and Accuracy

4.1 Prediction Using FANN
The FANN provides us with a function called “fann_run” that can predict results. Once we load
a saved neural network, we can then use this function to provide input values for the trained
neural network and provide us with an output. Once the output is stored into a file this file is then
this file is checked for accuracy by comparing it with a target file using a python script. The
following are the steps involved:

1. Load the trained neural network.

2. Provide input one row of inputs at a time
3. Save the output to a file, results.txt.

4. Provide the Target file and the results file to the python script mse.py

5. The script calculates the Mean Square Error and Percentage Error.

4.2 Prediction and Performance Results

Mini batch training on the entire data set.

![Error](image)

Figure 42: Batch Training

<table>
<thead>
<tr>
<th>Time Taken</th>
<th>Mean Squared error</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.37 hours</td>
<td>0.258</td>
</tr>
</tbody>
</table>

Training on a balanced dataset

The balanced dataset was 1% the size of the entire dataset with a mix of 50% true and false data.
The balanced dataset when exactly balanced performed as if it had only seen true data and classified everything as true. This is a case of failure.

Training Using RMSProp

The RMS prop algorithm is an algorithm that does not use the learning rate parameter directly. The learning rate at each neuron is calculated by dividing the learning rate by an average of the previous weights that this particular neuron has had.
Training on Falsified Data

In this case, the data was inserted with true values that had been changed to false.

In this kind of situation, the network was never able to converge towards the desired error rate.

This is due to the fact that the training data consisted of a large percentage of noisy data and the system was unable to recognize a correct classification pattern.
Varying the Number of Neurons for a Constant Dataset

This graph provides a comparison of training times of neural networks with different number of hidden neurons. The training data size is 10,000 rows, which is 1% of the entire training dataset.

As we can see, when the hidden neurons are less than half the size of the input layer, the error bounces between a large range and eventually reaches the desired error. In the case of the hidden layer being around 2/3 the size of the input layer, the error smoothly tapers off towards the desired error.
Figure 46: Varying Hidden Neurons: MSE vs. Epochs

Training Time for Networks with different Hidden Neurons

Figure 47: Training Time
The training time increases considerably as the number of neurons in the hidden layer approaches the number of neurons in the input layer.

Comparing Prediction Time of Networks with Different Hidden Neurons

![Graph showing prediction time vs. number of neurons for different training methods.](image)

Figure 48: Prediction Time

4.3 Conclusion

While the standard training techniques took around a 100 epochs to converge towards the desired error, training using mini batches generally took under 50 epochs to make this convergence.

Most notable was the Mini-batch Training using RMS propagation algorithm that took nearly 35 epochs to converge. This also had considerable effect on the training time, and the training was able to finish in less than 2 hours. The prediction rates for this kind of training were also very high. The percentage error was 0.39 percent.

5.0 Future Work
We have explored ideas where we are splitting and resampling the data based on rows. An important work will be to divide the data based on columns or features. One particular interesting approach would be to train multiple networks on different features and combine their outputs using the Multiple Experts Network. For example, there can be 3 networks training on approximately 120 features each. These outputs can then be used to predict, the output of these 3 networks can then be combined in different ways. It can either be used to train another neural network, or use a function to combine the 3 outputs into single output.

6.0 References

[5] Feature selection for pattern classification problems, Li Zhang, Gang Sun, Jun Guo School of Information Engineering, Beijing University of Posts and Telecommunications

[9] Feature Selection Using Principal Feature Analysis, Ira Cohen Qi Tian Xiang Sean Zhou Thomas S. Huang, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign.

[10] Overview of Amazon Web Services,

[11] Fast Artificial Neural Networks
#this script changes the ibm format to the required FANN format
1st line has totalrows inputs outpts, this appears at the top once
1st set of input
Target output
and so on, the entire file is space delimited

from xml.dom.minidom import parse, parseString

def processData(ipdoc, opdoc):
 print "Parsing started"
 print ipdoc
 ip = open(ipdoc, "r")
 op = open(opdoc, "w")
 csvdata = ip.readlines()
 for count, line in enumerate(csvdata):
 print ""
 op.write("%d 341 1\n" % (int(count)+1))
 op.close()
 op = open(opdoc, "a")

 for num, line in enumerate(csvdata):
 #print "Line number %d" %num
 data = []
 data = line.split("", ")
 pre = []
 post = []
 for idx, item in enumerate(data):
 if (idx < 342) and (idx > 0):
 pre.append(item)
 pre.append(" ")
 else:
 if (idx == 342):
 item = item.rstrip()
 if (item == "true"):
 #print "true"
 post.append("1 \n")
 else:
 #print "false"
 post.append("0 \n")
 printList(pre, op)
 op.write("\n")
 printList(post, op)
 #print "NUM %d" %num

 ip.close()
 op.close()
def printList(lst, opfile):
 for item in lst:
 opfile.write(item)

if __name__ == "__main__":
 ipdoc = "ibm2gb"
 opdoc = "ibm2gb.train"
 processData(ipdoc, opdoc)

7.2 Script to Generate Unlabeled Data from CSV file

Takes as input the ibm csv file
separates the results into a separate file
gives us an unlabelled csv file

from xml.dom.minidom import parse, parseString

def processData(ipdoc, opdoc, opdoc2):
 print "Parsing started"
 print ipdoc
 ip = open(ipdoc, "r")
 op = open(opdoc, "w")
 op2 = open(opdoc2, "w")
 csvdata = ip.readlines()

 for num, line in enumerate(csvdata):
 # print "Line number %d" % num
 data = []
 data = line.split(" ", ")
 pre = []
 post = []
 for idx, item in enumerate(data):
 if (idx < 342) and (idx >= 0):
 pre.append(item)
 pre.append(",")
 else:
 if (idx == 342):
 item = item.rstrip()
 if (item == "true"):
 # print "true"
 post.append("1
")
 else:
 # print "false"
 post.append("0
")

 printList(pre, op)
 op.write("\n")
 printList(post, op2)
def printList(lst, opfile):
 for item in lst:
 opfile.write(item)

if __name__ == "__main__":
 ipdoc = "ibm1gb"
 opdoc = "out1Test.data"
 opdoc2 = "out1Target.data"
 processData(ipdoc, opdoc, opdoc2)

this file will calculate the mean squared error and percent error
given the results and the targets
file also changes float results to binary from float if flag is set to 1
if not then results remain in float

from xml.dom.minidom import parse, parseString

def processData(ipdoc, ipdoc2, flag):
 #print "Parsing started"
 #print ipdoc
 test = open(ipdoc, "r")
 target = open(ipdoc2, "r")
 testdata = test.readlines()
 targdata = target.readlines()
 testList = []
 targList = []
 for num, line in enumerate(testdata):
 #print "Line number %d" %num
 data = line.rstrip()
 temp = float(data)
 if (flag == 1):
 if (temp > 0.65):
 temp = 1
 else:
 temp = 0
 testList.append(temp)
 for num, line in enumerate(targdata):
 #print "Line number %d" %num
 data = line.rstrip()
 targList.append(float(data))

 test.close()
target.close()
calc_mse(testList, targList)

def calc_mse(testList, targList):
 sum = 0
 tot = 0
 for tar, res in zip(targList, testList):
 diff = tar - res
 sqr = diff * diff
 sum += sqr
 tot = tot + 1

 mse = sum / tot
 percError = mse * 100
 #print (sum)
 #print (tot)
 print("mean Squared error: %f" %mse)
 print("Percent error: %f" %percError)

def printList(lst):
 for item in lst:
 print(item)

if __name__ == "__main__":
ipdoc = "test.txt"
ipdoc2 = "target.txt"
processData(ipdoc, ipdoc2, 1)