Document Type

Article

Publication Date

July 2016

Abstract

Semiconductors with a moderate bandgap have enabled modern electronic device technology, and the current scaling trends down to nanometer scale have introduced two-dimensional (2D) semiconductors. The bandgap of a semiconductor has been an intrinsic property independent of the environments and determined fundamental semiconductor device characteristics. In contrast to bulk semiconductors, we demonstrate that an atomically thin two-dimensional semiconductor has a bandgap with strong dependence on dielectric environments. Specifically, monolayer MoS2 bandgap is shown to change from 2.8 eV to 1.9 eV by dielectric environment. Utilizing the bandgap modulation property, a tunable bandgap transistor, which can be in general made of a two-dimensional semiconductor, is proposed.

Comments

SJSU users: Use the following link to login and access the article via SJSU databases.This article was published in Scientific Reports, volume 6, 2016, and can also be found online here.Copyright © 2016, The Authors

Share

COinS