Document Type

Conference Proceeding

Publication Date


Publication Title

2019 First International Conference on Graph Computing (GC)


In the graph classification problem, given is a family of graphs and a group of different categories, and we aim to classify all the graphs (of the family) into the given categories. Earlier approaches, such as graph kernels and graph embedding techniques have focused on extracting certain features by processing the entire graph. However, real world graphs are complex and noisy and these traditional approaches are computationally intensive. With the introduction of the deep learning framework, there have been numerous attempts to create more efficient classification approaches. We modify a kernel graph convolutional neural network approach, that extracts subgraphs (patches) from the graph using various community detection algorithms. These patches are provided as input to a graph kernel and max pooling is applied. We use different community detection algorithms and a shortest path graph kernel and compare their efficiency and performance. In this paper we compare three methods: a graph kernel, an embedding technique and one that uses convolutional neural networks by using eight real world datasets, ranging from biological to social networks.


This is a post-peer-review, pre-copyedit version of a chapter published in the proceedings of the 2019 First International Conference on Graph Computing (GC). The final authenticated version is available online at: © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

SJSU users: Use the following link to login and access the article via SJSU databases.