Publication Date

Spring 2013

Degree Type

Master's Project


A masquerader is an attacker who gains access to a legitimate user’s credentials and pretends to be that user so as to avoid detection. Several statistical techniques have been applied to the masquerade detection problem, including hidden Markov models (HMM) and one class na ̈ Bayes (OCNB). In addition, Kullback-Leibler ıve (KL) divergence has been used in an effort to improve detection rates. In this project, we develop and analyze masquerade detection techniques that employ KL divergence, HMMs, and ONCB. Detailed statistical analysis is provided to show that our results outperform previous related research.