Publication Date


Degree Type

Master's Project

Degree Name

Master of Science (MS)


Computer Science


IEEE 802.11n is a developing next-generation standard for wireless local area network (LAN). Seamless multimedia traffic connection will become possible with the 802.11n improvement in the Physical and MAC layer. The new 802.11n frame aggregation technique is particularly important for enhancing MAC layer efficiency under high speed wireless LAN. Although the frame aggregation can increase the efficiency in the MAC layer, it does not provide good performance in high BER channels when using large frame aggregation size. An Optimal Frame Aggregation (OFA) technique for AMSDU frame under different BERs in 802.11n WLANs was proposed. However, the suggested algorithm does not take into account the loss rate and the delay performance requirements for Voice or Video multimedia traffic in various BER channels. The optimal frame size can provide good throughput in the network, but the delay might exceed the Quality of Service (QoS) requirement of Voice traffic or the Frame-Error-Rate (FER) might exceed the maximum loss rate tolerable by the streaming Video traffic. We propose an Error- Sensitive Adaptive Frame Aggregation (ESAFA) scheme which can dynamically set the size of AMSDU frame based on the maximum Frame-Error-Rate (FER) tolerable by a particular multimedia traffic. The simulations show that our adaptive algorithm outperforms the optimal frame algorithm by improving both the delay and the loss rate in the 802.11n WLANs. The measured FER of the Error-Sensitive Adaptive Frame Aggregation scheme can be kept at about the same as the loss rate requirement for Video traffic even under high Bit-Error-Rate (BER) channel. The delay compared to OFA is also decreased by around 50% under different channel conditions. Moreover, the results show that the Error-Sensitive Adaptive Frame Aggregation scheme works particularly well in error-prone wireless networks.