Document Type

Article

Publication Date

December 2012

Publication Title

Evolution: Education and Outreach

Volume

5

First Page

534

Last Page

540

DOI

10.1007/s12052-012-0406-1

Abstract

While some marine animals are capable of traveling great distances, many have limited mobility as adults and spend the majority of their lifetimes in a small geographical area or may even be cemented to a single place. While it might be expected that species with limited mobility would have small geographic distributions, some nevertheless occur over very large areas. This is the case for some marine snails (gastropods). A key factor that impacts the geographic distribution of marine snails is the type of larvae they have during the phase of their life history that follows hatching from an egg. Because adult snails do not typically travel vast distances, the mobility of the larval stage determines the species’ ability to reach new territories. Some larvae are capable of long-distance travel, while others are not. An important component of the process of speciation involves geographic isolation, so the type of larvae a snail species possesses impacts the likelihood that it will become geographically isolated and give rise to a new species. Larval form also affects how long snail species will persist on geological timescales before going extinct, as well as rates of speciation. This paper briefly reviews the evolutionary consequences of different types of larval development in marine gastropods (especially cone snails, which are one of the most diverse groups of marine animals), particularly in determining the dispersal ability and geographic ranges of individual species, the amount of genetic exchange among populations within species, and the duration of species through time. The goal of this short review is to provide context and examples for classroom discussions of the connections between biogeography and macroevolution. Furthermore, a classroom activity is presented that involves students’ using information about snail life history and biogeography to develop research plans (and predicted results) that could be utilized to test (i.e., support or reject) several macroevolutionary hypotheses.

Comments

This article originally appeared in Evolution: Education and Outreach in Volume 5, Issue 4 and can be found online at this link. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Included in

Geology Commons

COinS