Document Type

Article

Publication Date

June 2019

Publication Title

Advances in Meteorology

Volume

2019

DOI

10.1155/2019/9292535

ISSN

1687-9309

Disciplines

Meteorology

Abstract

Key microphysical processes whose parameterizations have substantial impacts on the simulation of updraft mass fluxes and their response to aerosol are investigated in this study. For this investigation, comparisons of these parameterizations are made between a bin scheme and a bulk scheme. These comparisons show that the differences in the prediction of cloud droplet number concentration (CDNC) between the two schemes determine whether aerosol-induced invigoration of updrafts or convection occurs. While the CDNC prediction leads to aerosol-induced invigoration of updrafts and an associated 20% increase in the peak value of the updraft-mass-flux vertical profile in the bin scheme, it leads to aerosol-induced suppression of updrafts and an associated 7% decrease in the peak value in the bulk scheme. The comparison also shows that the differences in ice processes, in particular, in the snow loading lead to the different vertical patterns of the updraft-mass-flux profile, which is represented by the peak value and its altitude, between the schemes. Higher loading of snow leads to around 20–30% higher mean peak value and its around 40% higher altitude in the bin scheme than in the bulk scheme. When differences in the CDNC prediction and ice processes are removed, differences in the invigoration and the vertical pattern disappear between the schemes. However, despite this removal, differences in the magnitude of updraft mass fluxes still remain between the schemes. Associated with this, the peak value is around 10% different between the schemes. Also, after the removal, there are differences in the magnitude between cases with different aerosol concentrations for each scheme. Associated with this, the peak value is also around 10% different between those cases for each scheme. The differences between the cases with different aerosol concentrations for each scheme are generated by different evaporative cooling and different intensity of gust fronts between those cases. The remaining differences between the schemes are generated by different treatments of collection and sedimentation processes.

Comments

SJSU users: Use the following link to login and access the article via SJSU databases.This article was published in Advances in Meteorology, volume 2019, 2019, and can also be found online here. Copyright © 2019 Seoung Soo Lee et al.

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Included in

Meteorology Commons

COinS