Description

Communities with air quality problems in California and across the nation are proposing major beltway and highway projects to address roadway congestion problems. However, the travel and emissions models used in conformity analyses and environmental impact statements have low accuracy. Travel demand models are typically estimated on and calibrated to observed data, but rarely validated against observed data not used in their estimation and calibration. Validation of a model is critical to determining the degree of precision to which it can be reasonably applied. In this historical forecasting case study in the Sacramento, California region, the original version of the Sacramento regional travel demand model (estimated with 1991 data) is used with Year 2000 observed data to validate the model over a nine-year period. Three simulations are performed to test, respectively, model accuracy, the effect of errors in socioeconomic/land use projections, and induced travel. The results of the study suggest that the travel demand model (that is, its functional forms and parameters) overestimates vehicle miles traveled, vehicle hours traveled, and vehicle hours of delay (5.7, 4.2, and 17.1 percent, respectively). The errors in the socioeconomic/land use projections made in 1991 and used in the model approximately double the errors in vehicle travel. The model also underestimates induced travel (elasticity of 0.14) compared to the estimate of actual induced travel (elasticity of 0.22) in this study, but the upward bias in the model error swamps this underestimation. If the model were used for conformity analyses in this region, its overestimation of daily vehicle travel should provide a relatively generous margin of error with respect to meeting air quality emissions budgets. (Note that the version of the model used in this study is no longer used by the region.) On the other hand, in the analysis of travel effects of proposed highway investment projections in environmental impact statements, the overestimation of the daily travel results would tend to overestimate no-build travel demand and congestion and thus the need for new highway projects in the region. Compared to that in the no-build alternative, the magnitude of change for the highway alternative would have to be greater than the model error to be considered significantly different. This may be a difficult standard for the typical new highway project to meet.

Publication Date

6-1-2003

Publication Type

Report

Topic

Transportation/Land Use/Environment

MTI Project

2108

Keywords

Travel demand, Land use predictions, Regional analysis, Regional planning, Regional travel model.

Disciplines

Transportation

Share

COinS