Publication Date

Spring 2012

Degree Type

Master's Project

Degree Name

Master of Science (MS)


Computer Science


In spatial databases, data are associated with spatial coordinates and are retrieved based on spatial proximity. A spatial database uses spatial indexes to optimize spatial queries. An essential ingredient for efficient spatial query processing is spatial clustering of data and reorganization of spatial data. Traditional clustering algorithms and reorganization utilities lack in performance and execution. To solve this problem we have developed an algorithm to convert a two dimensional spatial index into a single dimensional value and then a reorganization is done on the spatial data. This report describes this algorithm as well as various experiments to validate its effectiveness.