Publication Date

Spring 2015

Degree Type

Master's Project

Degree Name

Master of Science (MS)


Computer Science

First Advisor

Sami Khuri

Second Advisor

Suneuy Kim

Third Advisor

Teng Moh


With the rapid growth of Internet, more and more natural language text documents are available in electronic format, making automated text categorization a must in most fields. Due to the high dimensionality of text categorization tasks, feature selection is needed before executing document classification. There are basically two kinds of feature selection approaches: the filter approach and the wrapper approach. For the wrapper approach, a search algorithm for feature subsets and an evaluation algorithm for assessing the fitness of the selected feature subset are required. In this work, I focus on the comparison between two wrapper approaches. These two approaches use Particle Swarm Optimization (PSO) as the search algorithm. The first algorithm is PSO based K-Nearest Neighbors (KNN) algorithm, while the second is PSO based Rocchio algorithm. Three datasets are used in this study. The result shows that BPSO-KNN is slightly better in classification results than BPSO-Rocchio, while BPSO-Rocchio has far shorter computation time than BPSO-KNN.