Publication Date

Fall 2015

Degree Type

Master's Project

Degree Name

Master of Science (MS)


Computer Science


With the increase in usage of the internet as a place to search for information, the importance of the level of relevance of the results returned by search engines have increased by many folds in recent years. In this paper, we propose techniques to improve the relevance of results shown by a search engine, by using the kinds of relationships between entities a user is interested in. We propose a technique that uses relationships between entities to recommend related entities from a knowledge base which is a collection of entities and the relationships with which they are connected to other entities. These relationships depict more real world relationships between entities, rather than just simple “is-a” or “has-a” relationships. The system keeps track of relationships on which user is clicking and uses this click count as a preference indicator to recommend future entities. This approach is very useful in modern day semantic web searches for recommending entities of user’s interests.