Publication Date

Spring 2018

Degree Type

Master's Project

Degree Name

Master of Science (MS)


Computer Science


The online apparel retail market size in the United States is worth about seventy-two billion US dollars. Recommendation systems on retail websites generate a lot of this revenue. Thus, improving recommendation systems can increase their revenue. Traditional recommendations for clothes consisted of lexical methods. However, visual-based recommendations have gained popularity over the past few years. This involves processing a multitude of images using different image processing techniques. In order to handle such a vast quantity of images, deep neural networks have been used extensively. With the help of fast Graphics Processing Units, these networks provide results which are extremely accurate, within a small amount of time. However, there are still ways in which recommendations for clothes can be improved. We propose an event-based clothing recommendation system which uses object detection. We train a model to identify nine events/scenarios that a user might attend: White Wedding, Indian Wedding, Conference, Funeral, Red Carpet, Pool Party, Birthday, Graduation and Workout. We train another model to detect clothes out of fifty-three categories of clothes worn at the event. Object detection gives a mAP of 84.01. Nearest neighbors of the clothes detected are recommended to the user.

Available for download on Saturday, June 01, 2019