Publication Date

Spring 2018

Degree Type

Master's Project

Degree Name

Master of Science (MS)


Computer Science


Face detection has been around for ages. Taking a step forward, human emotion displayed by face and felt by brain, captured in either video, electric signal (EEG) or image form can be approximated. Human emotion detection is the need of the hour so that modern artificial intelligent systems can emulate and gauge reactions from face. This can be helpful to make informed decisions be it regarding identification of intent, promotion of offers or security related threats. Recognizing emotions from images or video is a trivial task for human eye, but proves to be very challenging for machines and requires many image processing techniques for feature extraction. Several machine learning algorithms are suitable for this job. Any detection or recognition by machine learning requires training algorithm and then testing them on a suitable dataset. This paper explores a couple of machine learning algorithms as well as feature extraction techniques which would help us in accurate identification of the human emotion.