Publication Date

Spring 5-20-2019

Degree Type

Master's Project

Degree Name

Master of Science (MS)

Department

Computer Science

First Advisor

Robert Chun

Second Advisor

Thomas Austin

Third Advisor

Chris Pollett

Keywords

Recommender Systems, Collaborative Filtering, Hybrid Approach, Job search

Abstract

Skills-based hiring is a talent management approach that empowers employers to align recruitment around business results, rather than around credentials and title. It starts with employers identifying the particular skills required for a role, and then screening and evaluating candidates’ competencies against those requirements. With the recent rise in employers adopting skills-based hiring practices, it has become integral for students to take courses that improve their marketability and support their long-term career success. A 2017 survey of over 32,000 students at 43 randomly selected institutions found that only 34% of students believe they will graduate with the skills and knowledge required to be successful in the job market. Furthermore, the study found that while 96% of chief academic officers believe that their institutions are very or somewhat effective at preparing students for the workforce, only 11% of business leaders strongly agree [11]. An implication of the misalignment is that college graduates lack the skills that companies need and value. Fortunately, the rise of skills-based hiring provides an opportunity for universities and students to establish and follow clearer classroom-to-career pathways. To this end, this paper presents a course recommender system that aims to improve students’ career readiness by suggesting relevant skills and courses based on their unique career interests.

Share

COinS