Publication Date


Document Type


Publication Title

Journal of Applied Meteorology and Climatology







First Page


Last Page



The aim of this study was the analysis and simulation of the life cycle of a bifurcating thunderstorm that passed over Beijing, China, on 22 July 2015. Data from 150 surface weather sites and an S-band radar were used in con-junction with WRF simulations that used its multilevel Building Environment Parameterization (BEP) urbanization option. The Urban-case simulation used Beijing land-use information, and the NoUrban one replaced all urban areas by croplands. The Urban case correctly simulated both the observed weak 10-m winds over Beijing (<1.0 m s-1 ) and the weak 2-m urban heat island (<0.58C). Observed radar and rain gauge data, as well as the Urban-case results, all showed precipitation bifurcation around Beijing, with maximum accumulations in convergent flow areas on either side of the city. The Urban case also reproduced the observed precipitation minima over the urban area and in a downwind rain shadow. The observations and Urban-case results both also showed bifurcated flow, even when the storm was still upwind of Beijing. The subsequent bifurcated precipitation areas thus each moved along a preexisting flow branch. Urban-case vertical sections showed downward motion in the divergence areas over the urban core and upward motions over the lateral convergence zones, both up to 6 km. Given that the NoUrban case showed none of these features, these differences demonstrate how the impact of cities can extend upward into deep local convection. Additional case-study simulations are needed to more fully understand urban storm bifurcation mechanisms in this and other storms for cities in a variety of climates.

Funding Number


Funding Sponsor

National Natural Science Foundation of China


Anthropogenic effects, Numerical analysis/modeling, Rainfall, Urban meteorology


Meteorology and Climate Science