Improving Satellite Waveform Altimetry Measurements With a Probabilistic Relaxation Algorithm

Publication Date


Document Type


Publication Title

IEEE Transactions on Geoscience and Remote Sensing








The Geoscience Laser Altimeter System onboard the NASA Ice, Cloud, and land Elevation Satellite (ICESat/GLAS) provided elevation measurements of Earth's surface between 2003 and 2009. The centroid and maximum-amplitude-peak (MAP) retracking methods have been designed and applied to process the returned laser waveforms for elevation measurements. Although these two methods work well in general, they may generate erroneous measurements when the returned waveform was complicated by adverse atmospheric conditions (clouds, ice fogs, blowing snow, and dust storms). The centroid retracking method is often more severely affected when compared with the MAP retracking method. In this study, we present a new retracking method that exploits the spatial contextual information from neighboring footprints along the satellite ground track, in addition to the single return waveform shape information. Our method uses a probabilistic relaxation (PR) algorithm to integrate the spatial contextual information and the waveform shape information to identify the waveform peak that most likely represents the true surface elevation, rather than simply detecting the peak with the maximum magnitude. For different types of land surfaces, such as inland lakes, polar tundra, ice sheet, and sand deserts, we demonstrate that our new PR retracking method is able to produce more reliable, consistent, and accurate elevation measurements than the standard NASA ICESat/GLAS data products. The root mean squares error (RMSE) is reduced from 0.85 to 0.17 m for inland lake, from 0.81 to 0.23 m for polar tundra, from 1.25 to 0.33 m for ice sheet, and from 2.48 to 2.34 m for sand desert.


Sea surface, Surface waves, Land surface, Surface emitting lasers, Sea measurements, Measurement by laser beam, Ice, ICESat/GLAS, probabilistic relaxation (PR), retracking algorithm, spatial contextual information, waveforms


Urban and Regional Planning