Acoustic gait analysis using support vector machines

Publication Date

January 2018

Document Type

Contribution to a Book

Publication Title

Proceedings of the 4th International Conference on Information Systems Security and Privacy


Gait analysis, defined as the study of human locomotion, can provide valuable information for low-cost analytic and classification applications in security, medical diagnostics, and biomechanics. In comparison to visual-based gait analysis, audio-based gait analysis offers robustness to clothing variations, visibility issues, and angle complications. Current acoustic techniques rely on frequency-based features that are sensitive to changes in footwear and floor surfaces. In this research, we consider an approach to surface-independent acoustic gait analysis based on time differences between consecutive steps. We employ support vector machines (SVMs) for classification. Our approach achieves good classification rates with high discriminative one-vs-all capabilities and we believe that our technique provides a promising avenue for future development.

This document is currently not available here.