Publication Date

6-2-2021

Document Type

Article

Department

Biological Sciences

Disciplines

Maternal and Child Health | Pharmacology | Toxicology

Publication Title

Alcohol

Volume

94

DOI

10.1016/j.alcohol.2021.03.006

First Page

65

Last Page

73

Abstract

Alcohol is a known teratogen, and developmental exposure to ethanol results in fetal alcohol spectrum disorder (FASD). Children born with FASD can exhibit a range of symptoms including low birth weight, microcephaly, and neurobehavioral problems. Treatment of patients with FASD is estimated to cost 4 billion dollars per year in the United States alone, and 2 million dollars per affected individual's lifetime. We have established Drosophila melanogaster as a model organism for the study of FASD. Here we report that mutations in Dementin (Dmtn), the Drosophila ortholog of the Alzheimer's disease-associated protein TMCC2, convey sensitivity to developmental ethanol exposure, and provide evidence that Dmtn expression is disrupted by ethanol. In addition, we find that flies reared on ethanol exhibit mild climbing defects suggestive of neurodegeneration. Surprisingly, our data also suggest that flies reared on ethanol age more slowly than control animals, and we find that a number of slow-aging mutants are sensitive to developmental ethanol exposure. Finally, we find that flies reared on ethanol showed a persistent upregulation of genes encoding antioxidant enzymes, which may contribute to a reduced rate of central nervous system aging. Thus, in addition to the well-documented negative effects of developmental alcohol exposure on the nervous system, there may be a previously unsuspected neuroprotective effect in adult animals.

Keywords

aging, fetal alcohol spectrum disorder, oxidative stress

Comments

This is the Version of Record and can also be read online here.

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Share

COinS