Faculty Publications

Document Type


Publication Date



Sports Studies


Body temperatures and thermoregulatory responses were measured at rest and during submaximal exercise under normal ambient conditions in 11 aerobically-conditioned men (age = 29.2 +/- 6.2 yr, VO2(max) = 3.73 +/- 0.46 min(sup -1), relative body fat = 12.3 +/- 3.7 percent, mean +/- SD) with (CT) and without (NCT) the ingestion of 10 mg of caffeine per kg of body weight. Oxygen uptake (VO2), heart rate (HR), and rectal (T(sub re)) and mean skin (T-bar(sub sk)) temperatures were recorded for 100 minutes starting one minute after ingestion of caffeine or a placebo. Data were collected throughout 30 minutes of rest (sitting) and the following 70 minutes of sitting leg ergometer exercise using the same constant load (1,088 +/- 153 kgm/min) in both NCT and CT. The load resulted in a mean relative exercise intensity equal to approximately 68 percent of VO2(sub max). Skin heat conductance (H(sub sk)) and sweat rate were calculated. Two-way analysis of covariance revealed no significant (P greater than 0.05) differences between NCT and CT in VO2, HR, T(sub re), T-bar(sub sk), or H(sub sk). A dependent t-test indicated no significant difference between NCT and CT in sweat rate. Thus, a high level of caffeine ingestion has no detrimental effects on body temperatures and thermoregulatory responses during moderately heavy exercise in normal ambient conditions.


NASA Technical Memorandum 108783. Moffett Field, California: Ames Research Center of the National Aeronautics and Space Administration.