The Internet of Vehicles (IoV) aims to establish a network of autonomous and connected vehicles that communicate with one another through facilitation led by road-side units (RSUs) and a central trust authority (TA). Messages must be efficiently and securely disseminated to conserve resources and preserve network security. Currently, research in this area lacks consensus about security schemes and methods of disseminating messages. Furthermore, a current deficiency of information regarding resource optimization prevents further efficient development of this network. This paper takes an interdisciplinary approach to these issues by merging both cybersecurity and data science to optimize and secure the network. The proposed method is to apply Prim’s algorithm to an existing vehicular security scheme, Privacy-Preserving Dual Authentication Scheme (PPDAS), to further network efficiency in terms of power and time consumption. When a dual authentication security scheme is in place, the time taken for message dissemination follows a quadratic growth; applying Prim’s algorithm to the security scheme reduces the time to disseminate messages to a linear growth. The number of messages sent was decreased by a magnitude of up to 44.57. Contemporary security schemes are compared with PPDAS to justify the overhead consumption. Through the proposed approach, the usage of network resources, such as power and time, is reduced, which substantially enhances the performance of the vehicular network and allows for the scalability of the IoV.

Publication Date


Publication Type



Miscellaneous Transportation Topics

Digital Object Identifier

MTI Project



autonomous vehicles, Internet of Vehicles, security


Artificial Intelligence and Robotics | Transportation Engineering