Description

Many factors affect pavement compaction quality, which can vary. Such variability may result in an additional number of passes required, extended working hours, higher energy consumption, and negative environmental impacts. The use of Intelligent Compaction (IC) technology during construction can improve the quality and longevity of pavement structures while reducing risk for contractors and project owners alike. This study develops guidelines for the implementation of IC in the compaction of pavement layers as well as performing a preliminary life-cycle cost analysis (LCCA) of IC technology compared to the conventional compaction approach. The environmental impacts of the improved construction process were quantified based on limited data available from the case studies. The LCCA performed in this study consisted of different scenarios in which the number of operating hours was evaluated to estimate the cost efficiency of the intelligent compaction technique during construction. The analyses showed a reduction in energy consumption and the production of greenhouse gas (GHG) emissions with the use of intelligent compaction. The LCCA showed that the use of IC technology may reduce the construction and maintenance costs in addition to enhancing the quality control and quality assurance (QC/QA) process. However, a more comprehensive analysis is required to fully quantify the benefits and establish more accurate performance indicators. A draft version of the preliminary guidelines for implementation of IC technology and long-term monitoring of the performance of pavement layers compacted thereby is also included in this report.

Publication Date

1-2021

Publication Type

Report

Topic

Transportation Engineering, Transportation Technology

Digital Object Identifier

10.31979/mti.2021.1923

MTI Project

1923

Keywords

Compaction, Paving, Life Cycle Costing, Pavements, Infrastructure

Disciplines

Transportation | Transportation Engineering

Share

COinS