Document Type


Publication Date


Publication Title

Monthly Notices of the Royal Astronomical Society



First Page


Last Page





Astrophysics and Astronomy


We examine correlations between masses, sizes and star formation histories for a large sample of low-redshift early-type galaxies, using a simple suite of dynamical and stellar population models. We confirm an anticorrelation between the size and stellar age and go on to survey for trends with the central content of dark matter (DM). An average relation between the central DM density and galaxy size of 〈ρDM〉∝R−2eff provides the first clear indication of cuspy DM haloes in these galaxies – akin to standard Λ cold dark matter haloes that have undergone adiabatic contraction. The DM density scales with galaxy mass as expected, deviating from suggestions of a universal halo profile for dwarf and late-type galaxies. We introduce a new fundamental constraint on galaxy formation by finding that the central DM fraction decreases with stellar age. This result is only partially explained by the size–age dependencies, and the residual trend is in the opposite direction to basic DM halo expectations. Therefore, we suggest that there may be a connection between age and halo contraction and that galaxies forming earlier had stronger baryonic feedback, which expanded their haloes, or lumpier baryonic accretion, which avoided halo contraction. An alternative explanation is a lighter initial mass function for older stellar populations.


Copyright © 2011 Oxford University Press. The published article may be found at :