Document Type

Article

Publication Date

1-1-1994

Publication Title

Physical Review B

Volume

50

Issue Number

18

First Page

13710

Last Page

13723

DOI

10.1103/PhysRevB.50.13710

Keywords

Dynamic, phenomena, superconducting, oxides, ESR

Disciplines

Chemistry | Physical Chemistry

Abstract

Dynamic electron spin resonance (ESR) measurements compare the paramagnetic and antiferromagnetic (AF) properties of superconducting oxides in the range 4 K to room temperature, at 8 MHz and 9.36 GHz. Two are derivatives of YBa2Cu30 7: 1: Nd(Nd0.05Ba0.95 )2Cu30 7, Te0 =72 K and II: Y0.2Cao.8Sr2[Cu2(Tlo.5Pb0.5 )]07, Te0 =108 K and two are cases where AF ordering dominates the weak superconductivity: III: Nb01.1> 1. 25 ~Teo~ 10 K and IV: La2Ni04.00, 70 K :::: Teo:::: 40 K. At temperatures 298:::: T:::: 64 K, the ESR absorption by I indicates orthorhombic symmetry. The peaks at Ke =2.06, gb =2.13, and Ka =2.24 are identified with the presence of 5% Nd3+( 41912 ) in the Ba layer because the characteristic Cu2+ impurity hyperfine structure is absent and the ESR signal disappears several degrees below Te. Near Te the ESR absorption is reduced by two orders of magnitude. Proximity effects give rise to interference fringes with period r1 ( T) independent of the field B and the rate of sweep dBzldt. ESR is observed below Te because flux penetrates the superconductor. The temperature dependence of r1 leads to an activation energy for the flux motion E0 (1)/R ~ 16 K and Ea (111)/R ~3 K =Te /4. In the superconducting state a coherent flux expulsion response to a change in B. from 500 mT to zero is observed in times T, = 8 to 10 s. The inverse rate of noise spikes due to flux expulsion, when the samples are cooled through Te in a magnetic field, varies from Tnoise=3.5 s for III to 21 s for IV. The microwave absorption spectra identify three temperature regimes: (i) For 3.5 K < T < T m ""T* < Teo superconducting behavior was confirmed by the energy loss near zero magnetic field and the kinetics of high-field noise due to flux expulsion. Near g =2.00 ESR absorption is observed for all materials. A broad absorption near 50 to 100 mT at 9.36 GHz has been attributed to AF resonance. (ii) T m ""T* ~ T ~ Te identifies the range where flux motion gives rise to interference fringes in the ESR absorption. (iii) ESR and AF resonance are observed immediately after warming above Tc.

Comments

Copyright © 1994 American Physical Society. The published version of the article can be found online at: http://dx.doi.org/10.1103/PhysRevB.50.13710.

Share

COinS