Document Type
Article
Publication Date
1-1-2008
Publication Title
Biomaterials
Volume
29
Issue Number
18
First Page
2710
Last Page
2718
DOI
10.1016/j.biomaterials.2008.02.026
Disciplines
Biochemistry | Other Chemistry
Abstract
Organically-modified siloxanes were used as host materials to examine the influence of surface chemistry on protein conformation in a crowded environment. The sol–gel materials were prepared from tetramethoxysilane and a series of monosubstituted alkoxysilanes, RSi(OR′)3, featuring alkyl groups of increasing chain length in the R-position. Using circular dichroism spectroscopy in the far-UV region, apomyoglobin was found to transit from an unfolded state to a native-like helical state as the content of the hydrophobic precursor increased from 0 to 15%. At a fixed molar content of 5% RSi(OR′)3, the helical structure of apomyoglobin increased with the chain length of the R-group, i.e. methyl < ethyl < n-propyl < n-butyl < n-hexyl. This trend also was observed for the tertiary structure of ribonuclease A, suggesting that protein folding and biological activity are sensitive to the hydrophilic/hydrophobic balance of neighboring surfaces. The observed changes in protein structure did not correlate with total surface area or the average pore size of the modified glasses, but scanning electron microscopy images revealed an interesting relationship between surface morphology and alkyl chain length. The unexpected benefit of incorporating a low content of hydrophobic groups into a hydrophilic surface may lead to materials with improved biocompatibility for use in biosensors and implanted devices.
Recommended Citation
Daryl K. Eggers, B. Menaa, M. Herrero, V. Rives, and M. Lavrenko. "Favourable Influence of Hydrophobic Surfaces on Protein Structure in Porous Organically-Modified Silica Glasses" Biomaterials (2008): 2710-2718. https://doi.org/10.1016/j.biomaterials.2008.02.026
Comments
NOTICE: this is the author’s version of a work that was accepted for publication in Biomaterials. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Biomaterials, [VOL 29, ISSUE 18, (2008)] DOI# 10.1016/j.biomaterials.2008.02.026.