Document Type
Article
Publication Date
January 2018
Publication Title
Future Generation Computer Systems
Volume
78
Issue Number
1
First Page
413
Last Page
418
DOI
10.1016/j.future.2017.09.015
ISSN
0167-739X
Abstract
Social networks have become very important for networking, communications, and content sharing. Social networking applications generate a huge amount of data on a daily basis and social networks constitute a growing field of research, because of the heterogeneity of data and structures formed in them, and their size and dynamics. When this wealth of data is leveraged by recommender systems, the resulting coupling can help address interesting problems related to social engagement, member recruitment, and friend recommendations.In this work we review the various facets of large-scale social recommender systems, summarizing the challenges and interesting problems and discussing some of the solutions.
Recommended Citation
Magdalini Eirinaki, Jerry Gao, Iraklis Varlamis, and Konstantinos Tserpes. "Recommender Systems for Large-Scale Social Networks: A review of challenges and solutions" Future Generation Computer Systems (2018): 413-418. https://doi.org/10.1016/j.future.2017.09.015
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Comments
This accepted manuscript/post-print originally appeared in Future Generation Computer Systems, Volume 78, Issue 1, 2018. The article can also be found online by following this DOI link: https://doi.org/10.1016/j.future.2017.09.015
SJSU users: use the following link to login and access the article via SJSU databases.