Document Type

Article

Publication Date

2-2000

Publication Title

Faculty Publications

Volume

48

Issue Number

2

First Page

204

Last Page

213

DOI

10.1109/26.823553

Abstract

In this paper, theoretical upper bounds and computer simulation results on the error performance of multilevel block coded modulations for unequal error protection (UEP) and multistage decoding are presented. It is shown that nonstandard signal set partitionings and multistage decoding provide excellent UEP capabilities beyond those achievable with conventional coded modulation. The coding scheme is designed in such a way that the most important information bits have a lower error rate than other information bits. The large effective error coefficients, normally associated with standard mapping by set partitioning, are reduced by considering nonstandard partitionings of the underlying signal set. The bits-to-signal mappings induced by these partitionings allow the use of soft-decision decoding of binary block codes. Moreover, parallel operation of some of the staged decoders is possible, to achieve high data rate transmission, so that there is no error propagation between these decoders. Hybrid partitionings are also considered that trade off increased intraset distances in the last partition levels with larger effective error coefficients in the middle partition levels. The error performance of specific examples of multilevel codes over 8-PSK and 64-QAM signal sets are simulated and compared with theoretical upper bounds on the error performance.

Comments

Published in IEEE Transactions on Communications. February 2000: 48 (2).

© 2000 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. The definitive version is available at http://dx.doi.org/10.1109/26.823553

COinS