Document Type

Article

Publication Date

January 2014

Publication Title

Fire Ecology

Volume

10

Issue Number

1

First Page

43

Last Page

55

Abstract

Fire plays a central role in determining structure, composition, and recruitment in many forest types. In coast redwood forests, the role of fire is not well understood and scant literature exists on post-fire response, particularly in the southern part of the range. In order to better understand patterns of survival and recruitment following fire for coast redwood (Sequoia sempervirens [lamb. ex D. Don] Endl.) and associated tree species, three sites in the Santa Cruz Mountains, California, USA, were sampled following wildfire. Randomly selected 10 m diameter plots were used to collect data on survivorship and post fire regeneration in order to analyze short-term responses including mortality, crown retention, basal sprouting, canopy regeneration, and seedling production. Results indicated that coast redwood had the lowest percent mortality (11.98 %) and highest mean canopy retention (43.10 %) of all species sampled, followed by Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco) (25.54 %), tanoak (Notholithocarpus densiflorus [Hook. & Arn.] Manos) (23.27 %), combined oak species (Quercus sp.) (6.67 %), and Pacific madrone (Arbutus menziesii Pursh) (4.13 %). In addition, associated species experienced higher survival rates when proximate to coast redwoods. Coast redwood trees also exhibited the highest canopy regeneration (53 %), the highest average density of basal sprouts (3.54 × 104 ha), and the greatest average number of seedlings, ranging from zero to 2.09 × 105seedlings ha-1. Overall, coast redwood appeared to have a balance of fire adaptive features, exceeding all associated species, which allow individual trees to withstand fire, while at the same time promoting recruitment following fire.

Comments

This article was originally published in Fire Ecology, 10, 1, 2014. It can be found online at this link.

Share

COinS