Publication Date
Fall 2022
Degree Type
Master's Project
Degree Name
Master of Science (MS)
Department
Computer Science
First Advisor
Mark Stamp
Second Advisor
Thomas Austin
Third Advisor
William Andreopoulos
Keywords
Android Malware, Adverserial Attacks
Abstract
Recent years have seen an increase in sales of intelligent gadgets, particularly those using the Android operating system. This popularity has not gone unnoticed by malware writers. Consequently, many research efforts have been made to develop learning models that can detect Android malware. As a countermeasure, malware writers can consider adversarial attacks that disrupt the training or usage of such learning models. In this paper, we train a wide variety of machine learning models using the KronoDroid Android malware dataset, and we consider adversarial attacks on these models. Specifically, we carefully measure the decline in performance when the feature sets used for training or testing are contaminated. Our experimental results demonstrated that elementary adversarial attacks pose a significant threat in the Android malware domain.
Recommended Citation
Nune, Srilekha, "Adversarial Attacks on Android Malware Detection and Classification" (2022). Master's Projects. 1196.
DOI: https://doi.org/10.31979/etd.gjhb-v87s
https://scholarworks.sjsu.edu/etd_projects/1196