Publication Date
Spring 2023
Degree Type
Master's Project
Degree Name
Master of Science (MS)
Department
Computer Science
First Advisor
Mark Stamp
Second Advisor
Katerina Potika
Third Advisor
Genya Ishigaki
Keywords
keystroke dynamics, biometrics, CNNs
Abstract
We consider the potential of keystroke dynamics for user identification and authentication. We work with a fixed-text dataset, and focus on clustering users based on the difficulty of distinguishing their typing characteristics. After obtaining a confusion matrix, we cluster users into different levels of classification difficulty based on their typing patterns. Our goal is to create meaningful clusters that enable us to apply appropriate authentication methods to specific user clusters, resulting in an optimized balance between security and efficiency. We use a novel feature engineering method that generates image-like features from keystrokes and employ multiclass Convolutional Neural Networks (CNNs) to verify our clustering results.
Recommended Citation
Sharma, Atharva, "Keystroke Dynamics and User Identification" (2023). Master's Projects. 1275.
DOI: https://doi.org/10.31979/etd.pa2z-p7v3
https://scholarworks.sjsu.edu/etd_projects/1275