Publication Date
Spring 2016
Degree Type
Master's Project
Degree Name
Master of Science (MS)
Department
Computer Science
First Advisor
T. Y. Lin
Second Advisor
Jon Pearce
Third Advisor
James Casaletto
Keywords
association rule search geometric traversal problem
Abstract
This paper presents an efficient algorithm to extract knowledge from high-dimensionality, high- complexity datasets using algebraic topology, namely simplicial complexes. Based on concept of isomorphism of relations, our method turn a relational table into a geometric object (a simplicial complex is a polyhedron). So, conceptually association rule searching is turned into a geometric traversal problem. By leveraging on the core concepts behind Simplicial Complex, we use a new technique (in computer science) that improves the performance over existing methods and uses far less memory. It was designed and developed with a strong emphasis on scalability, reliability, and extensibility. This paper also investigate the possibility of Hadoop integration and the challenges that come with the framework.
Recommended Citation
Le, David, "Analyze Large Multidimensional Datasets Using Algebraic Topology" (2016). Master's Projects. 492.
DOI: https://doi.org/10.31979/etd.k9sg-r6wd
https://scholarworks.sjsu.edu/etd_projects/492