Publication Date

Spring 2017

Degree Type

Master's Project

Degree Name

Master of Science (MS)

Department

Computer Science

First Advisor

Melody Moh

Second Advisor

Teng Moh

Third Advisor

Thomas Austin

Keywords

adverse drug event, Twitter, machine learning

Abstract

Despite clinical trials by pharmaceutical companies as well as current FDA reporting systems, there are still drug side effects that have not been caught. To find a larger sample of reports, a possible way is to mine online social media. With its current widespread use, social media such as Twitter has given rise to massive amounts of data, which can be used as reports for drug side effects. To process these large datasets, Apache Spark has become popular for fast, distributed batch processing. In this work, we have improved on previous pipelines in sentimental analysis-based mining, processing, and extracting tweets with drug-caused side effects. We have also added a new ensemble classifier using a combination of sentiment analysis features to increase the accuracy of identifying drug-caused side effects. In addition, the frequency count for the side effects is also provided. Furthermore, we have also implemented the same pipeline in Apache Spark to improve the speed of processing of tweets by 2.5 times, as well as to support the process of large tweet datasets. As the frequency count of drug side effects opens a wide door for further analysis, we present a preliminary study on this issue, including the side effects of simultaneously using two drugs, and the potential danger of using less-common combination of drugs. We believe the pipeline design and the results present in this work would have great implication on studying drug side effects and on big data analysis in general.

Share

COinS