Publication Date
Spring 2019
Degree Type
Master's Project
Degree Name
Master of Science (MS)
Department
Computer Science
First Advisor
Chris Pollett
Second Advisor
Nada Attar
Third Advisor
Robert Chun
Keywords
Convolutional Neural Networks, Generative Adversarial Networks
Abstract
Image compression is a well-studied field of Computer Vision. Recently, many neural network based architectures have been proposed for image compression as well as enhancement. These networks are also put to use by frameworks such as end-to-end image compression.
In this project, we have explored the improvements that can be made over this framework to achieve better benchmarks in compressing images. Generative Adversarial Networks are used to generate new fake images which are very similar to original images. Single Image Super-Resolution Generative Adversarial Networks
(SI-SRGAN) can be employed to improve image quality. Our proposed architecture can be divided into four parts : image compression
module, arithmetic encoder, arithmetic decoder, image reconstruction module. This ar- chitecture is evaluated based on compression rate and the closeness of the reconstructed image to the original image.
Structural similarity metrics and peak signal to noise ratio are used to evaluate the image quality. We have also measured the net reduction in file size after compression and compared it with other lossy image compression techniques. We have achieved better results in terms of these metrics compared to legacy and newly proposed image compression algorithms. In particular, an average PSNR of 28.48 and SSIM value of 0.86 is achieved as compared to 28.45 PSNR and 0.81 SSIM value in end to end image compression framework [1]
Recommended Citation
Deshmukh, Kunal Rajan, "Image Compression Using Neural Networks" (2019). Master's Projects. 666.
DOI: https://doi.org/10.31979/etd.h8mt-65ct
https://scholarworks.sjsu.edu/etd_projects/666