Publication Date
Spring 2019
Degree Type
Master's Project
Degree Name
Master of Science (MS)
Department
Computer Science
First Advisor
Robert Chun
Second Advisor
Suneuy Kim
Third Advisor
Ashwin Vijaysai
Keywords
Classification, dimensionality reduction, neural networks, human activity recognition
Abstract
In the recent years, human activity recognition has been widely popularized by a lot of smartphone manufacturers and fitness tracking companies. It has allowed us to gain a deeper insight into our physical health on a daily basis. However, with the evolution of fitness tracking devices and smartphones, the amount of data that is being captured by these devices is growing exponentially. This paper aims at understanding the process of dimensionality reduction such as PCA so that the data can be used to make meaningful predictions along with novel techniques using autoencoders with different activation functions. The paper also looks into how using autoencoders allows us to better capture the relations between features in the data. It also covers some of the classification techniques such as k-Nearest Neighbors, SVM and Random forest that are currently being used for activity recognition that have shown promising results.
Recommended Citation
Narkhede, Anish Hemant, "Human Activity Recognition Based on Multimodal Body Sensing" (2019). Master's Projects. 682.
DOI: https://doi.org/10.31979/etd.zq8y-564m
https://scholarworks.sjsu.edu/etd_projects/682