Publication Date
Spring 2019
Degree Type
Master's Project
Degree Name
Master of Science (MS)
Department
Computer Science
First Advisor
Sami Khuri
Second Advisor
Philip Heller
Third Advisor
Wendy Lee
Keywords
CRISPR, CNNs, SVMs, Logistic Regression
Abstract
With advancements in the field of genome engineering, researchers have come up with potential ways for site-specific gene editing. One of the methods uses the Clustered Regularly Interspaced Short Palindromic Repeats - CRISPR-Cas technology. It consists of a Cas9 nuclease and a single guide RNA (sgRNA) that cleaves the DNA at the intended target site. However, the target genome could contain multiple potential off-target sites and cleaving an off-target site can have deleterious effects in case of gene editing in humans.
Lab based assays have been developed to test the off-target effects of guide RNAs. However, it is not feasible to scale these assays for reasons related to cost and labor. The use of Machine Learning models to compute the off-target potential makes these calculations cheaper and scalable. Both, classification as well as regression, can be used to solve this problem. In this project, we explore three classification models - Support Vector Machines (SVM), Logistic Regression and Convolutional Neural Networks (CNN).
Recommended Citation
Mathur, Ishita, "Predicting Off-Target Potential of CRISPR-Cas9 Single Guide RNA" (2019). Master's Projects. 718.
DOI: https://doi.org/10.31979/etd.r4d9-6y79
https://scholarworks.sjsu.edu/etd_projects/718