Publication Date
Spring 2019
Degree Type
Master's Project
Degree Name
Master of Science (MS)
Department
Computer Science
First Advisor
Robert Chun
Second Advisor
Nada Attar
Third Advisor
Terence Runge
Keywords
SQL Injection Attack, Machine Learning Classifier
Abstract
Sharing information over the Internet over multiple platforms and web-applications has become a quite common phenomenon in the recent times. The web-based applications that accept critical information from users store this information in databases. These applications and the databases connected to them are susceptible to all kinds of information security threats due to being accessible through the Internet. The threats include attacks such as Cross Side Scripting (CSS), Denial of Service Attack (DoS0, and Structured Query Language (SQL) Injection attacks. SQL Injection attacks fall under the top ten vulnerabilities when we talk about web-based applications. Through this kind of attack, the attacker can steal critical and confidential information and hence it could have damaging effects on a business or organization. The effects could range from monetary loss, leaking confidential business information, decrease in company’s stock market value or any combination of these. In this paper we have used an algorithm called Gradient Boosting Classifier from ensemble machine learning approaches to classify and detect SQL Injection attacks.
Recommended Citation
Mishra, Sonali, "SQL Injection Detection Using Machine Learning" (2019). Master's Projects. 727.
DOI: https://doi.org/10.31979/etd.j5dj-ngvb
https://scholarworks.sjsu.edu/etd_projects/727