Publication Date
Fall 2019
Degree Type
Master's Project
Degree Name
Master of Science (MS)
Department
Computer Science
First Advisor
Wendy Lee
Second Advisor
Natalia Khuri
Third Advisor
Mike Wu
Keywords
Text Extracttion, Drug data, NLP, Machine Learning
Abstract
Inadequate drug experimental data and the use of unlicensed drugs may cause adverse drug reactions, especially in pediatric populations. Every year the U.S. Food and Drug Administration approves human prescription drugs for marketing. The labels associated with these drugs include information about clinical trials and drug response in pediatric population. In order for doctors to make an informed decision about the safety and effectiveness of these drugs for children, there is a need to analyze complex and often unstructured drug labels. In this work, first, an exploratory analysis of drug labels using a Natural Language Processing pipeline is performed. Second, Machine Learning algorithms have been employed to build baseline binary classification models to identify pediatric text in unstructured drug labels. Third, a series of experiments have been executed to evaluate the accuracy of the model. The prototype is able to classify pediatrics-related text with a recall of 0.93 and precision of 0.86.
Recommended Citation
Garg, Deepti, "Information Extraction from Biomedical Text Using Machine Learning" (2019). Master's Projects. 897.
DOI: https://doi.org/10.31979/etd.njww-hye6
https://scholarworks.sjsu.edu/etd_projects/897