Publication Date
Spring 2020
Degree Type
Master's Project
Degree Name
Master of Science (MS)
Department
Computer Science
First Advisor
Leonard Wesley
Second Advisor
Allyson Rosen
Third Advisor
Yulia Newton
Keywords
Mild Cognitive Impairment, Computer Vision, Diffusion Compartmental Imaging, NODDI, Alzheimer's Disease
Abstract
The result of applying the Neurite Orientation Density and Dispersion Index (NODDI) algorithm to improve the prediction accuracy for patients diagnosed with MCI is reported. Calculations were carried out using a collection of 68 patients (34 control and 34 with MCI) gathered from the Alzheimer’s Disease Neuroimaging Initiative database (ADNI). Patient data includes the use of high-resolution Magnetic Resonance Images as with as Diffusion Tensor Imaging. A Linear Regression accuracy of 83% was observed using the added NODDI summary statistic: Orientation Dispersion Index (ODI). A statistically significant difference in groups was found between control patients and patients with MCI with a power 0.96. In order to confirm performance, comparison of accuracy of prediction without the use and with the use of the ODI values is also presented. The impact of this increase in accuracy on the early detection of MCI is also presented. Results show a 4.68% increase in prediction accuracy through the inclusion of the ODI values. Future work includes the use of tractography to better locate the specific area of interest. Increasing the cohort would also add validity to the results in this paper. Expanding the number of tracts utilized in this study would also validate the use of the NODDI algorithm to detect neurological deterioration in tracts associated with memory. The inclusion of more complex prediction models would also add possible increases in performance in modeling patients with MCI.
Recommended Citation
Jones, Matthew, "Detection of Mild Cognitive Impairment using Diffusion Compartment Imaging" (2020). Master's Projects. 935.
DOI: https://doi.org/10.31979/etd.9723-9dzq
https://scholarworks.sjsu.edu/etd_projects/935